Math, asked by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ, 3 months ago

If one of the zeroes of the cubic polynomial x³+ax²+bx+c is -1, then the product of the other two zeroes is,

i) b-a+1
ii) b-a-1
iii) a-b+1
iv) a-b-1​

Answers

Answered by MysticPetals
67

|| GIVEN ||

One of the zero of cubic polynomial = - 1

|| TO FIND ||

Product of the other two zeroes of Cubic polynomial.

|| SOLUTION ||

p(x) =  {x}^{3}  + a {x}^{2}  + bx + c

Let us substitue the value of zero of cubic polynomial in the equation.

 \bf \: p(x) =  {( - 1)}^{3}  + a( { - 1)}^{2}  + b( - 1) + c = 0

  \implies  - 1 + a - b + c = 0

 \implies \: a - b + c = 0

 \implies \: c = 1 - a + b

Let α , β and γ be the zeroes of the cubic polynomial.

We Know that ,

α \:  \times β \times γ =  \dfrac{ - d}{a}

Since , d= c Let's Substitute a = 1

 \implies \:  - 1 \times β \times γ =  \dfrac{c}{1}

→ βγ = c

From This C = 1 - a + b

c = b - a + 1 ( Option 1 )

For Further reference , See the attachment !

Attachments:
Answered by Anonymous
113

Answer:

Given :-

  • If one of the zeros of the cubic polynomial x³ + ax² + bx + c is - 1.

To Find :-

  • What is the product of the other two zeros.

Solution :-

Given equation :

 \longmapsto \sf\bold{\green{{x}^{3} + a{x}^{2} + bx + c}}

Then,

 \implies \sf P(x) =\: {x}^{3} + a{x}^{2} + bx + c =\: 0\\

By putting x = - 1 we get,

 \implies \sf P(x) =\: {(- 1}^{3} + a{(- 1)}^{2} + b(- 1)+ c =\: 0\\

 \implies \sf (- 1)(- 1)(- 1) + a(- 1)(- 1) + b(- 1) + c =\: 0\\

 \implies \sf (1)(- 1) + a(1) - b + c =\: 0\\

 \implies \sf - 1 + a - b + c =\: 0

 \implies \sf c =\: 1 - a + b\\

 \implies \sf\bold{\purple{c =\: b - a + 1}}\\

Now,

Let, α, β, γ be the roots of the cubic polynomial.

As we know that :

 \longmapsto \sf\boxed{\bold{\pink{\alpha + \beta + \gamma =\: \dfrac{- b}{a}}}}

 \longmapsto \sf\boxed{\bold{\pink{\alpha\beta + \beta\gamma +  \gamma\alpha =\: \dfrac{c}{a}}}}

 \longmapsto \sf\boxed{\bold{\pink{\alpha\beta\gamma =\: \dfrac{- d}{a}}}}

Since, we have to find the product,

Given :

\mapsto \sf {x}^{3} + a{x}^{2} + bx + c =\: 0

where,

  • a = 1
  • b = 1
  • c = b
  • d = c

So, by using the formula we get,

 \implies \sf \cancel{-} 1 \times \beta \times \gamma =\: \dfrac{\cancel{-} c}{1}\\

 \implies \sf\bold{\blue{\beta\gamma =\: c}}

Hence, we can write as :

\implies\sf\bold{\red{c =\: b - a + 1}}

\therefore The product of the other two zeros is b - a + 1.

Hence, the correct options is option no (1) b - a + 1 .

Similar questions