Math, asked by rajnandini05, 11 months ago

if one of the zeroes of the polynomial f(x)=(k square +8)x square +13x+6k is reciprocal of the other, then k is
(a) 4
(b) 2
(c) both (a)&(b)
(d) None of these

Answers

Answered by arvindumar4
8

Answer:

C

Step-by-step explanation: product of roots =1

That is c÷a=1

C=6k

a= k2+8

Answered by johnkumarrr4
12

Answer:

 option (c)  correct  k=4  or  k=2

Step-by-step explanation:

Given,

f\left ( x \right )=\left ( k^{2} +8\right )x^{2}+13x+6k=0

\alpha ,\beta    are the roots of f(x)

Roots are reciprocal to each other

\beta =1/\alpha

sum of roots      \alpha +\beta =-\left ( 13 \right )/\left ( k^{2}+8 \right )

product of roots   \alpha \times \beta =6k/\left ( k^{2}+8 \right )

\alpha \times 1/\alpha  =6k/\left ( k^{2}+8 \right )

1=6k/(k^{2}+8)

k^{2}+8=6k

k^{2}-6k+8=0

k^{2}-4k-2k+8=0

k\left ( k-4 \right )-2\left ( k-4 \right )=0

\left ( k-4 \right )\left ( k-2 \right )=0

If

k-4=0

k=4

if

k-2=0

k=2

k=4 or k=2

Similar questions