Math, asked by girlishstyle, 1 year ago

if one of the zeros of the polynomial 3x^2-8x+2k+1 is seven times the other, then find the zeros and value of k

Answers

Answered by Deepsbhargav
39
● THE GIVEN POLYNOMIAL IS

=> P(x) = 3x² - 8x + 2k + 1

___________________________

◢LET'S

 \alpha \: \: AND \: \: \beta \: \: ARE \: \: THE \: \: ZEROES \: \: \\ \ OF \: \: THE \: \: GIVEN \: \: EQUATION \:
____________________________

◢NOW,

● ACCORDING TO THE QUESTION

 = > \alpha = 7 \beta \: \: \: .....Eq _{1}
____________________________

● WE KNOW THAT

 = > SUM \: OF \: THE \: ZEROS \: =[ \frac{ - (COEFFICENT \: \: OF \: \: x)}{(COEFFICIENT \: \: OF \: \: {x}^{2}) } ]

◢THEN,

 = > \alpha + \beta \: = \frac{ - ( - 8)}{3} = \frac{8}{3} \\ \\ = > 7 \beta + \beta = \frac{8}{3} \: \: \: .....(By \: \: Eq _{1} )\\ \\ = > 8 \beta = \frac{8}{3} \\ \\ = > \beta = \frac{1}{3}

◢AND,

 = > \alpha = 7 \beta \: \: \: \: \: ....(By \: \: Eq _{1}) \\ \\ = > \alpha = 7 \times \frac{1}{3} \\ \\ = > \alpha = \frac{7}{3}
______________________________

◢NOW,

 = > PRODUCT \: \: OF \: \: ZEROS \: \: = \frac{CONSTANT \: \: TERM}{COEFFICIENT \: \: OF \: \: {x}^{2} } \\ \\ = > \alpha . \beta = \frac{2k + 1}{3}

● PLUG THE VLAUES

 = > \frac{7}{3} . \frac{1}{3} = \frac{2k + 1}{3} \\ \\ = > \frac{7}{9} = \frac{2k + 1}{3 } \\ \\ = > 2k + 1 = \frac{7}{3} \\ \\ = > 2k = \frac{7}{3} - \: 1 \\ \\ = > 2k = \frac{7 - 3}{3} = \frac{4}{3} \\ \\ = > k = \frac{2}{3}
__________________[◢ANSWER]

________________________________

● THUS THE VALUE OF "K" is

 = > k = \frac{2}{3}

====================================

BE \: \: BRAINLY
Similar questions