Math, asked by saqlain7pp, 1 year ago

If one root of the quadratic equation ax2 +bx+c=0 is triple the other show that 3b2 = 16 ac

Answers

Answered by YASH3100
176
Let the roots be alpha and 3alpha

=> alpha+3alpha = -b/a
=> 4alpha = -b/a
=> alpha = -b/4a ------(1)
=> alpha*3alpha = c/a
=> 3(alpha)^2 = c/a -----(2)

substitute (1) in (2)

=> 3(-b/4a)^2 = c/a
=> b^2/16a^2 = c/3a
=> b^2 = (16a^2*c)/3a
=> b^2 = 16ac/3
=> 3b^2 = 16ac (hence proved)

Hope it helps you.
Thank you.
Answered by atashvrraut
69

Step-by-step explanation:

as \: per \: condition \\  \alpha  = 3 \beta  \\ thereafter. \:  \\  \alpha  + 3 \alpha  =  \frac{ - b}{a}  \:  \: (bcz. \alpha  +  \beta  =  \frac{ - b}{a} ) \\ 4 \alpha  =  \frac{ - b}{a}  \\  \alpha  =  \frac{ - b}{4 \alpha }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - (1) \\ now \\  \alpha  \times  3 \alpha   =  \frac{c}{a} (bcz.\alpha  \times  \beta   =  \frac{c}{a}) \\ 3 { \alpha }^{2}  =  \frac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  - (2) \\ substituting \: the \: value \: of \:  \alpha  \: from \: 1st \\ therefore \\ 3 \times  { (\frac{ - b}{4a}) }^{2}  =  \frac{c}{a}  \\  \frac{3 {b}^{2} }{16 {a}^{2} }  =  \:  \frac{c}{a}  \\ 3 {b}^{2}  =  \frac{16 {a}^{2}c }{a}  \\ 3 {b}^{2}  = 16ac

Hopping this will help you...mark as brainliest if helped you

Similar questions