Math, asked by jashminegupta1, 10 months ago

if one zero of a polynomial (a square + 9) X square + 13 x + 6a is reciprocal of the Other find the value of a​

Answers

Answered by Anonymous
45

\huge\frak{\underline{\underline{\frak{\red{Question}}}}}

If one zero of a polynomial (a² + 9) x²+ 13 x + 6a is reciprocal of the other, find the value of a.

\huge\frak{\underline{\underline{\frak{\red{To\:find}}}}}

The value of a

\huge\frak{\underline{\underline{\frak{\red{Solution}}}}}

(a² + 9) x²+ 13 x + 6a

Let one zero of the polynomial be a

then the other zero is 1/a

Multiply both zeros

so, Product of zeros = \sf a×\large\frac{1}{a}=1

And

Product of zeros :-

\sf \large\frac{constant\:term}{coefficient\:of\:x^2} = \sf \frac{6a}{(a^2+9)}

\sf \large\frac{6a}{(a^2+9)}=1

\implies\sf a^2+9=6a

\implies\sf a^2+9-6a=0

Using this identity (a-b)²=a²+b²-2ab

\implies\sf (a-3)^2=0

\implies\sf a-3=0

\implies\sf a=3

\large{\boxed{\bf{a=3}}}

Similar questions