Physics, asked by satyasuhaas, 11 months ago

THE RATIO OF TIMES TAKEN BY A FREELY
FALLING BODY TO COVER FIRST METER
SECOND METER AND THIRD METER​

Answers

Answered by Anonymous
15

SoLuTiOn :

Given:

✏ A case of free falling body.

To Find:

✏ The ratio of time taken to cover first meter, second meter and third meter.

Formula:

✏ As per second equation of kinematics formula of distance covered by body is given by

 \star \:  \underline{ \boxed{ \bold{ \rm{ \pink{h = ut +  \frac{1}{2} a {t}^{2} }}}}}  \:  \star

Calculation:

✏ Let t1, t2, t3 be the timings for three successive equal heights h covered during the free fall of the particle.

Then,

 \mapsto \rm \: h =  \frac{1}{2} g {t}^{2}    \: or  \: t_1 =  \sqrt{ \frac{2h}{g} } .....(1) \:  \: ( \because{u} = 0) \\  \\  \mapsto \rm \: 2h =  \frac{1}{2} g {(t_1 + t_2)}^{2}   \: or  \: t_1 + t_2 =  \sqrt{ \frac{4h}{g} } .....(2) \\  \\  \mapsto \rm \: 3h =  \frac{1}{2} g {(t_1 + t_2 + t_3)}^{2}  \:  or \: t_1 + t_2 + t_3 =   \sqrt{ \frac{6h}{g} }  .....(3)

✏ Substracting 1 from 2, we get

 \mapsto \rm \: t_2 =  \sqrt{ \frac{4h}{g} }  -  \sqrt{ \frac{2h}{g} }  =  \sqrt{ \frac{2h}{g} } ( \sqrt{2}  - 1).....(4)

✏ Substracting 2 from 3, we get

 \mapsto \rm \: t_3 =  \sqrt{ \frac{6h}{g} }  -  \sqrt{ \frac{4h}{g} }  =  \sqrt{ \frac{2h}{g} } ( \sqrt{3}  -  \sqrt{2} ).....(5)

✏ From 1, 4 and 5, we get

 \orange{\bigstar}\underline{ \boxed{ \bold{ \rm{ \purple{t_1 :  t_2 : t_3 = 1 :( \sqrt{2}  - 1) :  ( \sqrt{3} -  \sqrt{2} ) }}}}}\orange{\bigstar}

Similar questions