Math, asked by kishoreananya, 1 year ago

if one zero of polynomial p(x) = (a²+9) x²+45a+6a is reciprocal of the other,find the value of 'a'

Answers

Answered by Anonymous
7

P(x)=(a²+9)x²+45a+6a

Given condition,

On zero is reciprocal to the other

 \sf{let \: one \: zero \: be \:  \alpha  \: }

 \sf{other \: zero \: would \: be \:  \frac{1}{ \alpha } } \\  \\

•Product of zeros of a polynomial: constant term/x²coefficient

Now,

 \sf{ \alpha . \frac{1}{ \alpha }  =  \frac{6a}{a {}^{2} + 9 } } \\  \\  \implies \:  \sf{ \frac{6a}{a {}^{2} + 9 } = 1 } \\  \\  \implies \:  \sf{a {}^{2} + 9 = 6a } \\  \\  \implies \:  \sf{a {}^{2} - 6a + 9 = 0 } \\  \\  \implies \:  \sf{a {}^{2} - 3a - 3a + 9 = 0 } \\  \\  \implies \:  \sf{(a - 3)(a - 3) = 0} \\  \\  \implies \:     \sf{(a - 3) {}^{2} = 0 \implies \: a - 3 = 0 } \\  \\ \:  \implies  \underline{\boxed{\sf{a = 3}}}

The value of a is 3

Similar questions