If one zero of the polynomial 3x2 - 10x +
3 is 1/3, the other zeroes is
A.
-3
B.
3
C.
-1/3
Answers
Answer:
B)
Step-by-step explanation:
Given polynomial : 3x^2- 10 x +33x
2
−10x+3
If one zero is \dfrac{1}{3}
3
1
To find : The other zero of the polynomial
As we know if ax² + bx +c is the standard form of quadratic polynomial
Then comparing we get
a = 3 , b = -10 , c= 3
Now the sum of zeroes is given by
\begin{gathered}\alpha + \beta = \dfrac{-b}{a} \\\\\Rightarrow \dfrac{1}{3} + \beta= \dfrac{-(-10)}{3} \\\\\Rightarrow \dfrac{1 + 3 \beta}{3} = \dfrac{10}{3} \\\\\Rightarrow 1+ 3\beta = 10 \\\\\Rightarrow 3\beta= 9 \\\\\Rightarrow \beta= 3\end{gathered}
α+β=
a
−b
⇒
3
1
+β=
3
−(−10)
⇒
3
1+3β
=
3
10
⇒1+3β=10
⇒3β=9
⇒β=3
Step-by-step explanation:
p(x) = 0
p( 1/3 ) = 3x² - 10x + 3
= 3 ( 1/3 )² + 10 (1/3) + 3
= 3 ( 1/9) + 10 /3 + 3
= 3/9 + 10 /3 + 3
= 1 + 10 + 3
3 3 1
= 1 + 10 + 9
3
= 20
3.