if one zero of the polynomial (a²+9) x² + 13x + 6a is reciprocal of the other, find the value of a
Answers
Answered by
3599
If one of the zero is reciprocal of the other,
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
let one zero be α
other zero will be 1/α
Product of roots = c/a
⇒ α × 1/α = 6a/(a²+9)
⇒ 1 = 6a/(a²+9)
⇒ a² + 9 = 6a
⇒ a² - 6a + 9 = 0
⇒ a² - 3a - 3a + 9= 0
⇒ a(a-3) -3(a-3) = 0
⇒ (a-3)(a-3) = 0
⇒ (a-3)²= 0
⇒ a = 3
Value of a is 3.
Answered by
1202
Answer :-
→ a = 3 .
Step-by-step explanation :-
Let one zero of the following polynomial be α .
Then, the other zero is 1/α .
product of zeros = ( α × 1/α ) = 1 .
But, product of zeros = ( constant term )/( coefficient of x² ) = 6a/(a² + 9 ) .
6a/(a² + 9) = 1 .
⇒ a² + 9 = 6a .
⇒ a² + 9 - 6a = 0 .
⇒ a² + 3² - 2(a)(3) = 0 .
⇒ ( a - 3 )² = 0 .
⇒ a - 3 = 0 .
a = 3 .
Hence, a = 3 .
Similar questions