Math, asked by mehulchoubey7061, 2 months ago

If one zero of the quadratic polynomial : x^2+(3k-5)x+2=0 is negative of the other. Find the value of k :​

Answers

Answered by BlessedOne
45

Given :

Polynomial -

  • \tt\:x^{2}+(3k-5)x+2=0

➷ It is also given that one zero of the given polynomial is negative of the other.

To find :

  • Value of k.

Concept :

For this question, we will first assume the two zeroes of the given polynomial. Then after using the formula which follows :

\maltese \sf\:Sum~of~the~zeroes~=~\frac{(-b)}{c}

we would calculate the required value of k.

Hope I sound clear let's do it :D~

Assumption :

Let of the polynomial be \bf\:\alpha

Then according to the question :

  • The other root = \bf\:(-\alpha)

Solution :

Polynomial -

\tt\:x^{2}+(3k-5)x+2=0

Here :

  • a = \tt\:1

  • b = \tt\:3k-5

  • c = \tt\:2

Lets now apply the formula :

\sf\:Sum~of~the~zeroes~=~\frac{(-b)}{c}

Substituting the values

\tt:\implies\:\alpha + (-\alpha)=\frac{(-b)}{c}

\tt:\implies\:\alpha + (-\alpha)=\frac{-(3k-5)}{2}

Multiplying and removing the brackets

\tt:\implies\:\alpha -\alpha=\frac{-3k+5}{2}

Terms with opposite signs gets cancelled out

\tt:\implies\:\cancel{\alpha} -\cancel{\alpha}=\frac{-3k+5}{2}

\tt:\implies\:0=\frac{-3k+5}{2}

Cross multiplying

\tt:\implies\:-3k+5=2 \times 0

\tt:\implies\:-3k+5=0

Transposing +5 from LHS to RHS it becomes -5

\tt:\implies\:-3k=-5

Negative signs gets cancelled out from both sides

\tt:\implies\:\cancel{-}3k=\cancel{-}5

\tt:\implies\:3k=5

Transposing 3 to RHS it goes to the denominator

\small{\underline{\boxed{\mathrm{:\implies~k~=~\frac{5}{3}}}}}

_____________________‎

Similar questions