Math, asked by karthikamaranman, 9 months ago

if p= 1/2-root3 and q=1/root 3 +2 then the value of 7p^2+11pq-7q^2 equals? btw i know this is on a exam in india that i cant talk about ;) but i have submitted already and this is my honest doubt after submitting.

Answers

Answered by ashishks1912
4

GIVEN :

If p=\frac{1}{2-\sqrt{3}} and q=\frac{1}{\sqrt{3}+2} then the value of 7p^2+11pq-7q^2

TO FIND :

The  value of 7p^2+11pq-7q^2

SOLUTION :

Given that the values are  p=\frac{1}{2-\sqrt{3}} and q=\frac{1}{\sqrt{3}+2}

From the given value p=\frac{1}{2-\sqrt{3}}

Now we can rationalise the denominator by multiplying and dividing by denominator's conjugate we get,

p=\frac{1}{2-\sqrt{3}}

=\frac{1}{2-\sqrt{3}}\times \frac{2+\sqrt{3}}{2+\sqrt{3}}

=\frac{2+\sqrt{3}}{2^2-(\sqrt{3})^2}

=\frac{2+\sqrt{3}}{4-3}

=\frac{2+\sqrt{3}}{1}

p=2+\sqrt{3}

Now for q=\frac{1}{\sqrt{3}+2}

we can rationalise the denominator by multiplying and dividing by denominator's conjugate we get,

=\frac{1}{\sqrt{3}+2}\times \frac{\sqrt{3}-2}{\sqrt{3}-2}

=\frac{\sqrt{3}-2}{(\sqrt{3})^2-2^2}

=\frac{\sqrt{3}-2}{3-4}

=\frac{\sqrt{3}-2}{-1}

=2-\sqrt{3}

q=2-\sqrt{3}

Substitute the values in 7p^2+11pq-7q^2 we get,

7p^2+11pq-7q^2=7(2+\sqrt{3})^2+11(2+\sqrt{3})(2-\sqrt{3})-7(2-\sqrt{3})^2

By using the Algebraic identities :

i) (a+b)^2=a^2+2ab+b^2

ii) (a-b)^2=a^2-2ab+b^2

iii) (a+b)(a-b)=a^2-b^2

=7(2^2+(\sqrt{3})^2+2(2)(\sqrt{3}))+11(2^2-(\sqrt{3})^2)-7(2^2+(\sqrt{3})^2-2(2)(\sqrt{3}))

=7(4+3+4\sqrt{3})+11(4-3)-7(4+3-4\sqrt{3})

=7(7+4\sqrt{3})+11(4-3)-7(7-4\sqrt{3})

=49+28\sqrt{3}+11-49+28\sqrt{3}

=56\sqrt{3}+11

7p^2+11pq-7q^2=56\sqrt{3}+11

∴ the value of 7p^2+11pq-7q^2=56\sqrt{3}+11

Similar questions