Math, asked by LordOfNoobs4498, 1 year ago

If p-1/p =8, find the value of p^3 - 1/p ^3

Answers

Answered by sehajarsh
0
Cubing both side
P^3 -1\p^3 - 3(8) = 512 [(a-b)^3 = a^3 - b^3 - 3ab(a-b) ... and value of a-b is given]
P^3 - 1/p^3 = 512+24= 536
Answered by BrainlyMT
1

Answer:

\huge\boxed{Answer}

 {p}  -  \frac{1}{ {p}}  = 8

 {p}^{3}  -  \frac{1}{ {p}^{3} }  = ?

( {p -  \frac{1}{p} } )  ^{3}  = \\   {p}^{3}  -  \frac{1}{p ^3}  - 3 \times p \times  \frac{1}{p} (p -  \frac{1}{p} )

( 8)  ^{3} =   {p}^{3}  -  \frac{1}{p ^3 }  - 3 \times (8)

512 =  {p}^{3}  -  \frac{1}{ {p}^{3} }  - 24

512 + 24 = {p}^{3}  -  \frac{1}{ {p}^{3} }

536 ={p}^{3}  -  \frac{1}{ {p}^{3} }

{p}^{3}  -  \frac{1}{ {p}^{3} } = 536

536 is your answer

Similar questions