Math, asked by rohantiger708, 5 months ago

If p = 3sec^2A and q = 3 tan^2A - 1, then find p - q​

Answers

Answered by Anonymous
14

p - q \\  \\  = 3 {sec}^{2}  \alpha  - (3 {tan}^{2}  \alpha  - 1) \\  \\  =  3 {sec}^{2}  \alpha  - 3 {tan}^{2}  \alpha   + 1 \\  \\  =  3( \frac{1}{ {cos}^{2} \alpha  } ) - 3( \frac{ {sin}^{2} \alpha  }{ {cos}^{2} \alpha  } ) + 1 \\  \\ now \: take \: lcm \\  \\ 3( \frac{1}{ {cos}^{2} \alpha  } ) - 3( \frac{ {sin}^{2} \alpha  }{ {cos}^{2} \alpha  } ) +  \frac{ {cos}^{2}  \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  \frac{3 - 3 {sin}^{2} \alpha  +  {cos}^{2}   \alpha }{ {cos}^{2} \alpha  }  \\  \\  =  \frac{3(1 -  {sin}^{2} \alpha ) +  {cos}^{2}   \alpha }{ {cos}^{2} \alpha  }  \\  \\  =   \frac{3( {cos}^{2} \alpha ) +  {cos}^{2} \alpha   }{ {cos}^{2}  \alpha } \\  \\  because \:  \: 1 -  {sin}^{2} x =  {cos}^{2} x \\  \\  = \frac{3{cos}^{2} \alpha +  {cos}^{2} \alpha   }{ {cos}^{2}  \alpha } \\  \\  = \frac{4 {cos}^{2} \alpha   }{ {cos}^{2}  \alpha } \\  \\  = 4

________________________:-)

Answered by prachimaharana53
0

Answer:

hi

Step-by-step explanation:

thanks for your free point

Similar questions