Math, asked by mouli6849, 10 months ago

If p=5-3√3, then find the value of p+1/p. Also state that whether it is rational or irrational.
Please explain with steps and I shall mark you Brainliest answer​

Answers

Answered by MisterIncredible
60

Given :-

p = 5 - 3√3

Required to find :-

  • The value of p + 1/p ?

  • Whether the value is irrational number ot not ?

Solution :-

Given data :-

p = 5 - 3√3

Let's find the value of p + 1/p

=> p = 5 - 3√3

=>1/p = 1/5 - 3√3

Let's rationalise the denominator

Rationalising factor of 5 - 33 is 5 + 33

Multiply the numerator and denominator with the rationalising factors .

  \tt\dfrac{1}{5 - 3 \sqrt{3} }  \times  \dfrac{5  + 3 \sqrt{3} }{5 + 3 \sqrt{3} }

 \tt \dfrac{5 + 3 \sqrt{3} }{(5  -  3 \sqrt{3})(5  +  3 \sqrt{3})  }

Here we need to use an algebraic identity ;

i.e.

  • ( x + y ) ( x - y ) = x² - y²

 \tt \dfrac{5 + 3 \sqrt{3} }{(5 {)}^{2}   - ( 3 \sqrt{3} {)}^{2}  }

 \tt \dfrac{5 + 3 \sqrt{3} }{5 \times 5 - 3 \times 3 \times  \sqrt{ {3}^{2} } }

 \tt \dfrac{5 + 3 \sqrt{3} }{25 - 9 \times 3}

 \tt \dfrac{5 + 3 \sqrt{3} }{25 - 27}

 \tt \dfrac{5 + 3 \sqrt{3} }{ - 2}

 \tt value \: of \:  \dfrac{1}{p}  = \bf  \dfrac{5 + 3 \sqrt{3} }{ - 2}

This implies ;

 \tt p + \dfrac{1}{p} \\  \\  \longrightarrow \tt 5 - 3 \sqrt{3}   + \dfrac{5 + 3 \sqrt{3} }{ - 2} \\  \\  \longrightarrow \tt  \dfrac{(5 - 3 \sqrt{3}) - 2 }{1 \times  - 2} +  \dfrac{5 + 3 \sqrt{3} }{ - 2} \\  \\  \longrightarrow \tt  \dfrac{ - 10 + 6 \sqrt{3} }{ - 2} +  \dfrac{5 + 3 \sqrt{3} }{ - 2} \\  \\  \implies \tt  \dfrac{ - 10 + 6 \sqrt{3} + 5  + 3\sqrt{3}  }{ - 2} \\  \\  \implies \tt \dfrac{ - 5 + 9 \sqrt{3} }{ - 2}

Hence,

 \sf{Value \:  of  \: p + \dfrac{1}{p} =  \dfrac{ - 5 + 9 \sqrt{3} }{ - 2} }

similarly,

 \tt{ \dfrac{ - 5 + 9 \sqrt{3} }{ - 2}} \:  \: is \:  \: an \:  \: irrational \: number \:

Additional Info :-

Now,

Let's prove that the -5+9√3/-2 is a irrational number

Let's assume on the contradictory that - 5 + 9√3/-2 is a rational number .

So,

Equal this with p/q ( where p , q are integers , q ≠ 0 , p and q are co - primes )

This implies ;

 \tt \dfrac{ - 5 + 9 \sqrt{3} }{ - 2} =  \dfrac{p}{q}

  \tt  - 5 + 9 \sqrt{3}  =  \dfrac{p}{q} \times  - 2

 \tt  - 5 + 9 \sqrt{3}   = \dfrac{  - 2p}{q}

 \tt    9\sqrt{3}  =  \dfrac{ - 2p}{q} + 5

 \tt 9 \sqrt{3}  =   \dfrac{ - 2p + 5q}{q}

 \tt  \sqrt{3}  =  \dfrac{ - 2p + 5q}{ \dfrac{q}{9} }

 \tt  \sqrt{3}  =  \dfrac{ - 2p + 5q}{9q}

we know that ;

√3 is an irrational number

But,

\tt\dfrac{-2p+5q}{9q} is a rational number .

This implies ;

 \tt  \sqrt{3}  \neq  \dfrac{ -2p + 5q}{9q}

Because,

An irrational number is never equal to a rational number .

Hence proved ! ✅

Answered by yash0025
12

P=5-3√3

p+1/p

=5-3√3+1/5-3√3

=5-3√3+1/5-3√3×5+3√3/5+3√3

5-√3+5+√3/25-9×3

5-√3+5+√3/-2

-10+6√3+5+√3/-2

-5+9√3/-2

And it is irrational number

Similar questions