If P(A) = 0.8, P (B) = 0.5 and P(B|A) = 0.4, find
(i) P(A ∩ B)
(ii) P(A|B)
(iii) P(A ∪ B)
Answers
Answered by
18
HLO MY FRND HERE IS UR ANSWER....!
❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇
1)P(AnB)
GIVEN,
P(A)=O.8. P(B)=0.5. P(B/A)=0.4
WE KNOW THAT,
P(B/A)=P(AnB)/P(A)
0.4=P(AnB)/0.8
0.4×0.8=P(AnB)
0.32=P(AnB).
✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔
2)P(A/B)
WE KNOW THAT,
P(A/B)=P(AnB)/P(B)
P(A/B)=0.32/0.5
P(A/B)=32/50
P(A/B)=16/25
P(A/B)=0.64.
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
3)P(AUB)
WE KNOW THAT,
P(AUB)=P(A)+P(B)-P(AnB)
=0.8+0.5-0.32
=1.3-0.32
=0.98.
✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴
HOPE ITS HELP U...‼‼‼‼‼‼‼‼‼‼‼
❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇❇
1)P(AnB)
GIVEN,
P(A)=O.8. P(B)=0.5. P(B/A)=0.4
WE KNOW THAT,
P(B/A)=P(AnB)/P(A)
0.4=P(AnB)/0.8
0.4×0.8=P(AnB)
0.32=P(AnB).
✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔✔
2)P(A/B)
WE KNOW THAT,
P(A/B)=P(AnB)/P(B)
P(A/B)=0.32/0.5
P(A/B)=32/50
P(A/B)=16/25
P(A/B)=0.64.
⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇
3)P(AUB)
WE KNOW THAT,
P(AUB)=P(A)+P(B)-P(AnB)
=0.8+0.5-0.32
=1.3-0.32
=0.98.
✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴✳✴
HOPE ITS HELP U...‼‼‼‼‼‼‼‼‼‼‼
Answered by
4
The value of P(A ∩ B) is 0.32
The value of P(A|B) is 0.64
The value of P(A ∪ B) is 0.98
Step-by-step explanation:
Consider the provided information.
P(A) = 0.8, P (B) = 0.5 and P(B|A) = 0.4
Part (i): P(A ∩ B)
Use the formula:
Substitute the respective values in the above formula.
Hence, the value of P(A ∩ B) is 0.32
Part (ii) P(A|B)
Use the formula:
Substitute the respective values in the above formula.
Hence, the value of P(A|B) is 0.64
Part (iii) P(A ∪ B)
Use the formula: P(A ∪ B) = P(A)+P(B)-P(A∩ B)
Substitute the respective values in the above formula.
P(A ∪ B) = 0.8+0.5-0.32
P(A ∪ B) = 0.98
Hence, the value of P(A ∪ B) is 0.98
#Learn more
Question 7 A and B are two events such that P(A) = 0.54, P(B) = 0.69 and P(A∩B) = 0.35.
Find (i) P(A∩B) (ii) P(A′∩B′) (iii) P(A∩B′) (iv) P(B∩A′)
https://brainly.in/question/1842395
Similar questions