If P(A)=3/8,P(B)=1/2 and P(A int B)=1/2,find P(A'|B') and P(B'|A')
Answers
Answered by
19
Answer
Step-by-step explanation:
Concept:
Addition theorem of probability
P(AUB) = P(A)+P(B)-P(A∩B)
P(A/B)=P(A∩B)/P(B)
Given:
P(A)=3/8 and P(B)=1/2
P(A∩B) = 1/2
By addition theorem of probabability
P(AUB) = P(A)+P(B)-P(A∩B)
P(AUB) =
P(AUB) =
P((AUB)')=1-P(AUB)
P((AUB)')=1-
P((AUB)')=
P((AUB)')=
P(A')= 1 - P(A)
P(A')= 1 -
P(A')=
P(A')=
P(B')= 1 - P(B)
P(B')= 1-
P(B')=
P(A'/B')
= P(A'∩B')/P(B')
=P((AUB)')/P(B')
P(B'|A')
= P(A'∩B')/P(A')
=P((AUB)')/P(A')
=1
Answered by
1
Answer:
land
Step-by-step explanation:
loda mera glt answer h
Similar questions
English,
6 months ago
Computer Science,
6 months ago
English,
1 year ago
Science,
1 year ago
English,
1 year ago