Math, asked by mateen4678, 1 year ago

If P(A) = \frac{6}{11}, P(B) = \frac{5}{11} and P(A ∪ B) =\frac{7}{11} , find
(i) P(A∩B)
(ii) P(A|B)
(iii) P(B|A)

Answers

Answered by hukam0685
0
If P(A) = \frac{6}{11}, P(B) = \frac{5}{11} and P(A ∪ B) =\frac{7}{11}

To find

(i) P(A∩B) :

we know that

P(A∩B) = P(A)+P(B)-P(A ∪ B)


=
 \frac{6}{11}  +  \frac{5}{11}  -  \frac{7}{11}  \\  \\  =  \frac{6  + 5 - 7}{11}  \\  \\  =  \frac{4}{11}  \\  \\
(ii) P(A|B) :

To find conditional probability

P(A|B) =P(A∩B)/P(B)

 =  \frac{4}{11}  \times  \frac{11}{5}  \\  \\  =  \frac{4}{5} \\  \\

(ii) P(B|A) :

To find conditional probability

P(B|A) =P(A∩B)/P(A)

 =  \frac{4}{11}  \times  \frac{11}{6}  \\  \\  =  \frac{4}{5}  \\  \\


Similar questions