if p and q are non zero solutions of the equation (x-a)/b + (x-b)/a = b/(x-a) + a/(x-b) then which of the following statement is/are true?i)p and q are of same sign ii)p and q are of opposite sign .justify your answer
Answers
Answered by
1
(x-a)/b+(x-b)/a=b/(x-a)+a/(x-b)
=>(x-a)/b -b/(x-a)=a/(x-b) - (x-b)/a
if we let (x-a)/b=t
and a/(x-b) = r
now,
t - 1/t = r - 1/r
t - r =1/t - 1/r
(t - r) = -(t - r)/tr
tr = -1 and t =r
now put t and r value
(x-a)/b .a/(x-b)=1
a (x - a)= -b (x-b)
ax -a^2 = b^2 - bx
(a + b) x =(a^2+ b^2)
x=(a^2 + b^2)/(a+b)
again t=r
(x-b)/a =b/(x-a)
(x- a)(x-b)=ab
x^2+(a+b) x +ab=ab
x=0, -(a+b)
here non zero solution -(a+b) and (a^2+ b^2)/(a + b) .
we see both are opposite sign .
option (ii) is correct.
=>(x-a)/b -b/(x-a)=a/(x-b) - (x-b)/a
if we let (x-a)/b=t
and a/(x-b) = r
now,
t - 1/t = r - 1/r
t - r =1/t - 1/r
(t - r) = -(t - r)/tr
tr = -1 and t =r
now put t and r value
(x-a)/b .a/(x-b)=1
a (x - a)= -b (x-b)
ax -a^2 = b^2 - bx
(a + b) x =(a^2+ b^2)
x=(a^2 + b^2)/(a+b)
again t=r
(x-b)/a =b/(x-a)
(x- a)(x-b)=ab
x^2+(a+b) x +ab=ab
x=0, -(a+b)
here non zero solution -(a+b) and (a^2+ b^2)/(a + b) .
we see both are opposite sign .
option (ii) is correct.
Answered by
4
(x-a)/b + (x-b)/a = b/(x-a) - a/(x-b)
--→ (x-a)/b - b/(x-a) = a/(x-b) - (x-b)/a
Suppose (x-a)/b = m and a/(x-b) = n
m-1/m = n-1/n
m-n=1 / m-1/n
(m-n) = - (m-n)/mn
mn= - (m-n)/mn
mn = -1 and m=n
Now putting the value of m and n
(x-a)/b . a/(x-b)=1
a(x-a) = -b (x-b)
ax - a^2 = b^2 - bx
(a+b)x = (a^2 + b^2)
x= (a^2 + b^2)/ (a+b)
Again there will be m=n
(x-b)/a = b/(x-a)
(x-a) (x-b) = ab
x^2 + (a+b) x + ab = ab
x= 0, -(a+b)
I think (ii) option will be correct because the value of x is of the opposite sign.....
Hope u like the answer.
MATK AS BRAINLIEST
--→ (x-a)/b - b/(x-a) = a/(x-b) - (x-b)/a
Suppose (x-a)/b = m and a/(x-b) = n
m-1/m = n-1/n
m-n=1 / m-1/n
(m-n) = - (m-n)/mn
mn= - (m-n)/mn
mn = -1 and m=n
Now putting the value of m and n
(x-a)/b . a/(x-b)=1
a(x-a) = -b (x-b)
ax - a^2 = b^2 - bx
(a+b)x = (a^2 + b^2)
x= (a^2 + b^2)/ (a+b)
Again there will be m=n
(x-b)/a = b/(x-a)
(x-a) (x-b) = ab
x^2 + (a+b) x + ab = ab
x= 0, -(a+b)
I think (ii) option will be correct because the value of x is of the opposite sign.....
Hope u like the answer.
MATK AS BRAINLIEST
Similar questions