Math, asked by aaron13384, 4 months ago

if p and q are whole numbers
p^q=529, find  [{{(6-q)^{p - 17} }}]^{ - 1}

Answers

Answered by shristy62
0

Have a great day ahead!!!!!!

Answered by Anonymous
5

Step-by-step explanation:

 {p}^{q}  = 529 \\  \\  =  >  {23}^{2}  = 529 \\  \\ p = 23 \:  \: and \:  \: q = 2 \\  \\ ( {(6 - q)}^{p - 17} ) {}^{ - 1}  \\  \\  = ((6 - 2) {}^{23 - 17} ) {}^{ - 1}  \\  \\  = ((4) {}^{6} ) {}^{ - 1}  \\  \\  = 4 {}^{ - 6}  \\  \\  =  \frac{1}{ {4}^{6} }  \\  \\ p \: and \: q \: are \: whole \: number \:  \: so \:  \\  \\ ( { - 23})^{2}  = 529 \\  \\ here \: p \:  =  - 23 \: and \: q \:  = 2 \\  \\ (( {6 - q})^{p - 17} ) {}^{ - 1}  \\  \\  = ((6 - 2) {}^{ - 23 - 17} ) {}^{ - 1}  \\  \\  = ((4) {}^{ - 40} ) {}^{ - 1}  \\  \\  =  {4}^{40}  \\  \\  \\ using \: formula \:  \:  ( {x}^{m} ) {}^{n}  =  {x}^{mn}  \\  \\  {x}^{ - 1}  =  \frac{1}{x}  \\  \\  {x}^{ - 2}  =  \frac{1}{ {x}^{2} }

Similar questions