If p = (cot A + tan A) and
q = (sec A + cosec A), prove that
(92 - p2)2 = 4p2
Answers
Step-by-step explanation:
#include<stdio.h>
void main()
{
int arr[5]={4,12,78,90,70};
int i=0;
for(i=0;i<=4;i++)
{
printf("\n %d",arr[i]);
}
return 0;
}
Answer:
i think some thing i missed here !!
Step-by-step explanation:
p = (cot A + tan A) & q = (sec A + cosec A)
to prove: (p²-q²)² = 4p² ---------------- (A)
=> (p²-q²) = √(4p²) = 2p
ie., to prove (A) , we just need to prove (p²-q²) = 2p
let us take the
LHS = (p²-q²)
= (cot A + tan A)² - (sec A + cosec A)²
= (cot²A +2+tan²A) - (sec²A +2secA.cosecA+cosec²A)
= (cot²A +1+1+tan²A) - (sec²A +2secA.cosecA+cosec²A)
= cosec²A+sec²A - sec²A - 2 secA.cosecA - cosec²A
= - 2 secA.cosecA
= - 2(*)
= 2* ( )
2p = 2(cotA+tanA) = 2(1/tanA + tanA )
= 2(1+tan²A)/tanA
= 2 sec²A . cotA