Chemistry, asked by anandam92, 11 months ago

If P.E. of an electron is -6.8 eV in Hydrogen then find out
1. K.E.
2. total energy
3. the orbit where electron exist
4. radius of the orbit​

Answers

Answered by BrainIyMSDhoni
111

Answers:-

  1. Kinetic energy is 3.4 eV.
  2. Total energy is -3.4 eV.
  3. Electron will exist in 2nd orbit.
  4. Radius of the orbit is 2.116 Å

We have:-

Potential energy = -6.8 eV

Solution:-

 \sf{ \large{\bold{1.} \: K.E. =   - \frac{P.E.}{2}}}  \\  \\  \rightarrow\sf \: K.E. =   - (\frac{ - 6.8}{2}) \\  \\  \rightarrow\sf \: K.E. =   \frac{ \cancel6.8}{ \cancel2} \\ \\    \rightarrow\red{\boxed{\sf \: K.E. = 3.4eV}} \\  \\ \sf{ \large{\bold{2.} \: T.E. = - K.E}} \\  \\ \rightarrow\green{\sf{\boxed{T.E. =  - 3.4eV}}}

 \sf{ \large{\bold{3.} \: E =  - 13.6 \times  \frac{ {Z}^{2} }{ {n}^{2} }}} \\  \\  \rightarrow \sf{3.4 =  - 13.6  \times \frac{ {1}^{2} }{ {n}^{2} }} \\   \\ \rightarrow  \sf{n}^{2}  = \frac{ - 13.6}{ - 3.4}  \\ \\  \rightarrow \sf{n}^{2}  =  \frac{  \cancel{- 13.6}}{\cancel{- 3.4}} \\  \\  \rightarrow   \sf{n}^{2} = 4 \\ \\   \rightarrow \sf{n =  \sqrt{4}} \\  \\  \rightarrow \: \green{\boxed{\sf{n = 2}}} \\  \\  \large \sf{Therefore - } \\  \\  \underline{ \sf{The \: orbit \: where \: electron \: exist \: is \:  {2}^{nd}.}} \\  \\ \sf{ \large{\bold{4.} \: r = 0.529 \times  \frac{ {n}^{2} }{ {z}^{2}} \: A}} \\  \\  \rightarrow  \sf{r = 0.529 \times  \frac{ {2}^{2} }{1} A} \\  \\ \rightarrow  \sf{r = 0.529 \times 4A} \\  \\  \rightarrow   \pink{ \boxed{\sf{r = 2.116A}}}


nirman95: Awesome ❤️
Answered by EliteSoul
103

Answer:

\huge\underline\mathfrak{Solution\::}

Given that,

P.E.of an electron = -6.8 eV

________________________

1.K.E. = -(P.E./2)

=> K.E. = -(-6.8/2)

=> K.E. = 3.4eV

______________________

2. Total energy = - K.E.

=> Total energy = -3.4eV

______________________

3.\: \:E =  - 13.6 \times  \frac{z {}^{2} }{n {}^{2} }  \\  - 3.4 =  - 13.6 \times  \frac{1 {}^{2} }{n {}^{2} } \\  n {}^{2} =  \frac{ - 13.6}{3.4}  \\ n {}^{2}   = 4 \\ n =  \sqrt{4}   \\ n = 2

So electron exists in 2nd orbital.

________________________

4. \:  \: r = 0.529 \times  \frac{n {}^{2} }{z {}^{2} } A\\  \:  \: r = 0.529 \times  \frac{2 {}^{2} }{1} A \\  \:  \: r = 2.116A

Hope it helps you ♥ ♥ ♥

Similar questions