Math, asked by ramyavenkatesh202, 9 months ago


If p is length of peopendicular from origin to
the line whose intercepts on the axes are a and b, then show that 1/p² = 1a² +1b²​

Answers

Answered by shadowsabers03
7

In the fig. the line makes intercept a and b on the axes, thus making a right triangle ABC with origin and axes. The perpendicular drawn from origin to the line meets the line at D.

Then in right triangle ACD,

  • \small\text{$AD=\sqrt{AC^2-CD^2}=\sqrt{b^2-p^2}$}

and in right triangle CBD,

  • \small\text{$BD=\sqrt{BC^2-CD^2}=\sqrt{a^2-p^2}$}

Method 1:-

We see triangles ACD and CBD are similar with ∠CAD = ∠BCD, ∠ACD = ∠CBD and ∠ADC = ∠CDB. Therefore,

\small\text{$\longrightarrow\dfrac{AD}{AC}=\dfrac{CD}{CB}$}

\small\text{$\longrightarrow\dfrac{\sqrt{b^2-p^2}}{b}=\dfrac{p}{a}$}

Squaring both sides,

\small\text{$\longrightarrow\dfrac{b^2-p^2}{b^2}=\dfrac{p^2}{a^2}$}

By rule of alternendo (i),

\small\text{$\longrightarrow\dfrac{b^2-p^2}{p^2}=\dfrac{b^2}{a^2}$}

By rule of componendo (ii),

\small\text{$\longrightarrow\dfrac{b^2-p^2+p^2}{p^2}=\dfrac{b^2+a^2}{a^2}$}

\small\text{$\longrightarrow\dfrac{b^2}{p^2}=\dfrac{a^2+b^2}{a^2}$}

Dividing both sides by b²,

\small\text{$\longrightarrow\dfrac{1}{p^2}=\dfrac{a^2+b^2}{a^2b^2}$}

\small\text{$\longrightarrow\underline{\underline{\dfrac{1}{p^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}}}$}

Method 2:-

Since \small\text{$AD=\sqrt{b^2-p^2}$} and \small\text{$BD=\sqrt{a^2-p^2},$} the length of AB,

\small\text{$\longrightarrow AB=AD+BD=\sqrt{a^2-p^2}+\sqrt{b^2-p^2}\quad\dots(1)$}

But in triangle ABC, applying Pythagoras' Theorem,

\small\text{$\longrightarrow AB=\sqrt{AC^2+BC^2}=\sqrt{a^2+b^2}\quad\dots(2)$}

From (1) and (2),

\small\text{$\longrightarrow\sqrt{a^2-p^2}+\sqrt{b^2-p^2}=\sqrt{a^2+b^2}$}

Squaring both sides,

\small\text{$\longrightarrow\big(\sqrt{a^2-p^2}+\sqrt{b^2-p^2}\big)^2=\big(\sqrt{a^2+b^2}\big)^2$}

\small\text{$\longrightarrow a^2-p^2+b^2-p^2+2\sqrt{(a^2-p^2)(b^2-p^2)}=a^2+b^2$}

\small\text{$\longrightarrow a^2+b^2-2p^2+2\sqrt{(a^2-p^2)(b^2-p^2)}=a^2+b^2$}

\small\text{$\longrightarrow-2p^2+2\sqrt{(a^2-p^2)(b^2-p^2)}=0$}

\small\text{$\longrightarrow2\sqrt{(a^2-p^2)(b^2-p^2)}=2p^2$}

\small\text{$\longrightarrow\sqrt{(a^2-p^2)(b^2-p^2)}=p^2$}

Squaring both sides,

\small\text{$\longrightarrow(a^2-p^2)(b^2-p^2)=p^4$}

\small\text{$\longrightarrow a^2b^2-p^2(a^2+b^2)+p^4=p^4$}

\small\text{$\longrightarrow a^2b^2-p^2(a^2+b^2)=0$}

\small\text{$\longrightarrow a^2b^2=p^2(a^2+b^2)$}

\small\text{$\longrightarrow\dfrac{a^2b^2}{p^2}=a^2+b^2$}

\small\text{$\longrightarrow\dfrac{1}{p^2}=\dfrac{a^2+b^2}{a^2b^2}$}

\small\text{$\longrightarrow\underline{\underline{\dfrac{1}{p^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}}}$}

Hence Proved!

Attachments:
Similar questions