Math, asked by inda19deependra, 4 hours ago

if p is real, what is the nature of the roots of x^2+2(p+1)x+2p=0?​

Answers

Answered by TheAestheticBoy
253

Step-by-step explanation:

________________________________

\large\underline{\underline\bold\red{Question :- }}

If p is real, then what is the nature of the roots in the given equation :-

\large{\bold{→ {x}^{2}  + 2 \: (p + 1)x + 2p }}

________________________________

\large\underline{\underline\bold\red{Answer→}}

\large{\bold{➡ \:  {x}^{2}  + 2 \: (p + 1)x + 2p }}

\large{\bold{➡ \: (x + p + 1) {}^{2}  + 2p - (p + 1) {}^{2} }}

\large{\bold{➡ (x + p + 1) {}^{2}  -  {p}^{2} - 1  }}

________________________________

 \bigstar\large\underline{\bold\pink{Consequently,  \: the \:  roots  \: are  \: both \:  real, \:  and  \: distinct.}}

\large{\bold{➡  \: x = - p - 1 ± \sqrt{ {p}^{2} + 1 }  }}

________________________________

 \bigstar \: \large\underline{\bold\blue{Extra \:  Information :- }}

There are always two real roots and at least one will be negative ( the one with the minus sign ). Both will be negative only if p is positive. If p=0 the roots are 0 and −2.

________________________________

\huge\colorbox{pink}{Hope lt'z Help You ❥ }

Similar questions