Math, asked by loneheroine18, 1 month ago

if p-q√3 = 2-√3/2+√3, then find the value of p and q​

Answers

Answered by ImperialGladiator
3

Answer :

  • p = 7
  • q = 4

Explanation :

Given,

 \longrightarrow \rm \: p - q \sqrt{3}  =  \dfrac{2  - \sqrt{3} }{2  +   \sqrt{3} }

Find the value of a and b.

Taking R. H. S.

 =  \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} }

Rationalising the denominator,

 \longrightarrow \:  \dfrac{2  - \sqrt{3} }{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2  -  \sqrt{3} }  \\

\longrightarrow \:  \dfrac{4 - 2 \sqrt{3} - 2 \sqrt{3}  + 3 }{ {(2)}^{2} -  {( \sqrt{3 }) }^{2}  }  \{ \because \rm (a - b)(a + b) = a^{2}  - b^{2}  \} \\

\longrightarrow \:  \dfrac{7 - 4 \sqrt{3} }{4 - 3}  \\

\longrightarrow  \blue{  \dfrac{7 - 4 \sqrt{3} }{1} }

On comparing with L. H. S.

\rm \implies \:  {7 - 4 \sqrt{3} } = p - q \sqrt{3}  \\  \rm \therefore \:p = 7 \: and \: q = 4

\Huge{\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_}

Identity used :

  • (a - b) (a + b) = a² - b²
Similar questions