Math, asked by ksashwinkumar81, 8 months ago

if p,q are the roots of ax^2+bx+c=0 then find
( \frac{1}{p}  -  \frac{1}{q} ) {}^{2}
I want urgently ​

Answers

Answered by ItzArchimedes
3

__________________________

Sᴏʟᴜᴛɪᴏɴ :-

Given ,

  • Quadratic equation → ax² + bx + c = 0
  • p , q are the roofs of te given equation.

We need to find ,

  • \sf\left[\dfrac{1}{p} - \dfrac{1}{q}\right]^2

_______________

Simplifying , the given question we have

\sf \left[\dfrac{1}{p}-\dfrac{1}{q}\right]^2

\sf \left[\dfrac{q-p}{pq}\right]

Using

\bf \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}

\sf\dfrac{(q-p)^2}{(pq)^2}

Using

(a - b)² = + b² - 2ab

\sf\dfrac{q^2+p^2-2pq}{(pq)^2}

As we know that

Sum of roots (p + q) = \bf\dfrac{-b}{a}

Product of roots (pq) = \bf\dfrac{c}{a}

+ = \bf \dfrac{b^2-2ac}{a^2}

Substituting we have

\sf \dfrac{\frac{b^2-2ac}{a^2} + 2\left(\frac{c}{a}\right)}{\left(\frac{c}{a}\right)^2}

 \boxed{\bf \dfrac{b^2 - 4ac}{c^2}}

Hence , (1/p- 1/q)² =  \boxed{\bf \dfrac{b^2 - 4ac}{c^2}}

__________________________

Similar questions