Math, asked by arunavaghosh779, 10 months ago

if p/q+q/p=1; then the value of p^3+q^3​

Answers

Answered by rishu6845
17

Answer:

\huge{\boxed{\pink{ {p}^{3}  +  {q}^{3}  = 0}}}

Step-by-step explanation:

\bold{\underline{\red{Given}}}\longrightarrow \\  \dfrac{p}{q}  +  \dfrac{q}{p}  = 1

\bold{\underline{\green{To \: find}}}\longrightarrow \\ value \: of \:  ({p}^{3}  +  {q}^{3} )

\bold{\underline{\blue{Concept \: used}}}\longrightarrow \\  {x}^{3}  +  {y}^{3}  = (x + y) \: ( {x}^{2}  +  {y}^{2}  - xy)

solution \\  \:  \:  \:  \:  \:  \:  \:  \:  \dfrac{p}{q}  +  \dfrac{q}{p}  = 1 \\  =  >  \dfrac{ {p}^{2} +  {q}^{2}  }{pq}  = 1 \\  =  >  {p}^{2}  +  {q}^{2}  = pq \\  =  >  {p}^{2}  +  {q}^{2}  - pq = 0 \\ now \\  {p}^{3}  +  {q}^{3}  = (p + q) \:  \: (  {p}^{2}  +  {q}^{2}  - pq \: ) \\ putting \: ( {p}^{2}  +  {q}^{2}  - pq) = 0 \: we \: get \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = (p + q) \:  \: (0) \\  =  >  {p}^{3}  +  {q}^{3}  = 0

\bold{\underline{\pink{Additional \: information}}}\longrightarrow \\ 1) {x}^{3}  -  {y}^{3}  = (x - y) \: ( {x}^{2}  +  {y}^{2}  + xy) \\ 2) {x}^{2}  -  {y}^{2}  = (x + y) \: (x - y) \\ 3)(x + y) ^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy \\ 4) {(x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy

Similar questions