if p+q+r = 1 and pq+qr+pr = -1 and pqr = -1, find the value of p³+q³+r³
Answers
Answered by
7
Answer:
Please check the attachment
Please Mark it Brainlist
FOLLOW ME
THANK YOU
Attachments:
Answered by
12
Given:
p+q+r=1
pq+qr+pr = -1
and pqr = -1
To Find:
p³+q³+r³=?
Using Algebraic Identities:
(a+b+c)²=a²+b²+c+2ab+2bc+2ac
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
Solution:
(p+q+r)²=p²+q²+r²+2pq+2qr+2pr
(p+q+r)²=p²+q²+r²+2(pq+qr+pr)
(1)²=p²+q²+r²+2(-1)
1=p²+q²+r²-2
p²+q²+r²=3
Now
p³+q³+r³-3pqr=(p+q+r)(p²+q²+r²-pq-qr-pr)
p³+q³+r³=(p+q+r)[p²+q²+r²-(pq+qr+pr)]+3pqr
p³+q³+r³=(1)[3-(-1)]+3(-1)
p³+q³+r³=4-3
p³+q³+r³=1
Similar questions