Math, asked by shimranaktar6, 9 months ago

if p,q,r in A.P then p^3+r^3-8q^3=?

Answers

Answered by yashaswini3679
4

Answer:

-6pqr

Step-by-step explanation:

Given,

p, q, r are in AP.

So, their common difference will be equal.

i.e, q - p = r - q

2q = r + p

q = (r + p)/2

Substitute this in given equation.

p^3 + r^3 - 8q^3

p^3 + r^3 - 8(r + p /2)^3

p^3 + r^3 - r^3 - p^3 - 3pr(r+p)

-3pr(p + r)

-3pr(2q) ...... [p+r = 2q]

-6pqr

HOPE THIS ANSWER HELPS U.....

<body bgcolor=yellow><marquee direction="left"><font color=red> Please mark it as BRAINLIEST....

Answered by Sankalp050
1

Step-by-step explanation:

 { {3}^{2} }^{3}  \times  {(2 \times  {3}^{5}) }^{ - 2}  \times  {18}^{2 }  \\  \\  =  {3}^{6}  \times  \frac{1}{4 \times  {3}^{10} }  \times  {18}^{2}  \\  \\  =  \frac{ {18}^{2} }{4 \times  {3}^{4} }  \\  \\  =  \frac{ \cancel{18 } \: ^{ \cancel{6}} \: ^{ \cancel{2}}\times { \cancel{18}}  \: ^{ \cancel{6 }} \:  ^{ \cancel{2}} \:  ^1 }{ { \cancel{4 }\:_1}\times { \cancel{3} \: _1} \times { \cancel{3 } \: _1}\times { \cancel{3} \:_1} \times { \cancel{3} \: _1} }  \\  \\  = { \huge{ \red{ \boxed{1}}}}

Similar questions