Math, asked by karthik189, 1 year ago

If p=root 7- root5/root7+root5 and q=root7+root5/root7-root5 Find the value of p2-q2

Answers

Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
p =  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  \\  \\ on \: rationalizing \: we \: get \\  \\  =  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7}  +  \sqrt{5} }  \times  \frac{ \sqrt{7}  -  \sqrt{5} }{ \sqrt{7} -  \sqrt{5}  }  \\  \\  using \: the \: idenities \\  {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{7} )}^{2} +  {( \sqrt{5} )}^{2}   - 2 \times  \sqrt{7}  \times  \sqrt{5} }{ {( \sqrt{7} )}^{2} -  {( \sqrt{5}) }^{2}  }  \\  \\  =  \frac{7 + 5 - 2 \sqrt{35} }{7 - 5}  \\  \\  =  \frac{12 - 2 \sqrt{35} }{2}  \\  \\  = 6 -  \sqrt{35}  \\  \\ q =  \frac{ \sqrt{7}  +  \sqrt{5} }{ \sqrt{7} -  \sqrt{5}  }   \times  \frac{ \sqrt{7}  +  \sqrt{5} }{ \sqrt{7} +  \sqrt{5}  }  \\  \\ using \: the \: idenities \\  {(a  +  b)}^{2}  =  {a}^{2}  +  {b}^{2}   +  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{7}) }^{2} +  {( \sqrt{5}) }^{2}  + 2 \times  \sqrt{7}  \times  \sqrt{5}  }{ {( \sqrt{7} })^{2}  -  {( \sqrt{5} )}^{2} }  \\  \\  =  \frac{7 + 5 + 2 \sqrt{35} }{7 - 5}  \\  \\  =  \frac{12 + 2 \sqrt{35} }{2}  \\  \\  =  6+  \sqrt{35}  \\  \\  {p}^{2}  -  {q}^{2}  \\  \\  =  {(6 -  \sqrt{35} )}^{2}  -  {(6 +  \sqrt{35} )}^{2}  \\  \\  = ( {(6)}^{2}  +  {( \sqrt{35} )}^{2}  - 2 \times 6 \times  \sqrt{35} ) - ( {(6)}^{2}  +  {( \sqrt{35}) }^{2}  + 2 \times 6 \times  \sqrt{35} ) \\  \\  = (36 + 35  - 12 \sqrt{35} ) - (36 + 35 + 12 \sqrt{35} ) \\  \\  = (71 - 12 \sqrt{35} ) - (71 + 12 \sqrt{35} ) \\  \\  = 71 - 12 \sqrt{35}  - 71 - 12 \sqrt{35}  \\  \\  =  - 12 \sqrt{35}  - 12 \sqrt{35}  \\  \\  =  - 24 \sqrt{35}

Hope this helps!!!!

@Mahak24

Thanks....
☺☺
Similar questions