Math, asked by bhuminegi777, 10 months ago

if P=
 \sqrt{16  + 8 \sqrt{3} }  -  \sqrt{21 - 12 \sqrt{3} }
Find value of P





Answers

Answered by mysticd
4

 i ) \sqrt{16 + 8 \sqrt{3}} \\= \sqrt{ 16 + 2\sqrt{48}} \\= \sqrt{ (12+4) + 2\sqrt{12\times 4}} \\= \sqrt{ \sqrt{12}^{2} + \sqrt{4}^{2} + 2\times \sqrt{12} \times \sqrt{4} } \\= \sqrt{ ( \sqrt{12} + \sqrt{4} )^{2}}\\= \sqrt{12} + \sqrt{4} \\= \sqrt{12} + 2 \: --(1)

 ii ) \sqrt{21 - 12 \sqrt{3}} \\= \sqrt{ 21 -  2\sqrt{108}} \\= \sqrt{ (12+9) - 2\sqrt{12\times 9}} \\= \sqrt{ \sqrt{12}^{2} + \sqrt{9}^{2} - 2\times \sqrt{12} \times \sqrt{9} } \\= \sqrt{ ( \sqrt{12} - \sqrt{9} )^{2}}\\= \sqrt{12} - \sqrt{9} \\= \sqrt{12} - 3 \: --(2)

 Now , \red { P = \sqrt{16 + 8 \sqrt{3} } - \sqrt{21 - 12 \sqrt{3} }}

 \implies P = \sqrt{12} + 2 - ( \sqrt{12} - 3 ) \\\blue { [ From \: (1) \:and \: (2) ] }

 \implies P = \sqrt{12} + 2 -  \sqrt{12} + 3 \\= 2 + 3 \\= 5

Therefore.,

 \red { Value \: P } \green { = 5 }

•••♪

Similar questions