Math, asked by sharanyalanka7, 3 months ago

If p, x_1,x_2,x_3.... and q,y_1,y_2,y_3.. form two infinite A.P's with common difference 'a' and 'b' respectively then the locus of P(\alpha,\beta) where \alpha = \dfrac{x_1+x_2+..+x_n}{n}, \beta = \dfrac{y_1+y_2+..y_n}{n} is :-

Answers

Answered by mathdude500
89

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

and

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2}( \:a\:+a_n)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Given that,

\sf \:p, x_1,x_2,x_3 -  -    \: are \: in \: AP \: with \: common \: difference \: a

So,

  • First term of an AP = p

  • Common difference of an AP = a

So,

\rm :\longmapsto\:x_n \: is \:  {(n + 1)}^{th}  \: term \: of \: an \: AP

\rm :\implies\:x_n = p + (n + 1 - 1)a

\rm :\implies\:x_n = p + na -  -  - (1)

Also

\sf \:q, y_1,y_2,y_3 -  -    \: are \: in \: AP \: with \: common \: difference \: b

So,

  • First term of an AP = q

  • Common difference of an AP = b

So,

\rm :\longmapsto\:y_n \: is \:  {(n + 1)}^{th}  \: term \: of \: an \: AP

\rm :\implies\:y_n = q + (n + 1 - 1)b

\rm :\implies\:y_n = q + nb -  -  - (2)

Now,

Given that,

\rm :\longmapsto\: \alpha  = \dfrac{ x_1 + x_2 + x_3 +  -  -  -  + x_n}{n}

\rm :\longmapsto\: \alpha  = \dfrac{ \dfrac{ \cancel{n}}{2}(x_1+ x_n)}{ \cancel{n}}

\rm :\longmapsto\: \alpha  = \dfrac{x_1 + x_n}{2}

\rm :\longmapsto\: \alpha  = \dfrac{x_1 + p + na}{2}  \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\: \alpha  = \dfrac{a + p+ p + na}{2}  \:  \:  \:  \{  \because\:x_1 = p + a \}

\rm :\longmapsto\:2 \alpha  = 2p + a + na

\rm :\longmapsto\:2 \alpha - 2p  = a(1 + n)

\bf\implies \:n + 1 = \dfrac{2 \alpha  - 2p}{a}  -  -  - (3)

Given that

\rm :\longmapsto\:  \beta   = \dfrac{ y_1 + y_2 + y_3 +  -  -  -  + y_n}{n}

\rm :\longmapsto\: \beta  = \dfrac{ \dfrac{ \cancel{n}}{2}(y_1+ y_n)}{ \cancel{n}}

\rm :\longmapsto\: \beta  = \dfrac{y_1 + y_n}{2}

\rm :\longmapsto\: \beta  = \dfrac{y_1 + q + nb}{2}  \:  \:  \:  \{ \: using \: (2) \}

\rm :\longmapsto\: \beta  = \dfrac{b + q+ q + nb}{2}  \:  \:  \:  \{  \because\:y_1 = q + b \}

\rm :\longmapsto\:2 \beta  = 2q + b + nb

\rm :\longmapsto\:2 \beta - 2q  =  b(1 + n)

\bf\implies \:n + 1 = \dfrac{2 \beta  - 2q}{b}  -  -  - (4)

Now,

Equating equation (3) and (4), we get

\bf\implies \:\dfrac{2 \alpha   - 2p}{a}= \dfrac{2 \beta  - 2q}{b}

\bf\implies \:\dfrac{\alpha   - p}{a}= \dfrac{ \beta  - q}{b}

\rm :\longmapsto\: b\alpha  - bp = a \beta  - aq

\rm :\longmapsto\: b\alpha  - bp  - a \beta  + aq = 0

\bf\implies \:\: b\alpha  - a \beta  + aq - bp = 0

 \:  \:  \:  \:  \:  \:  \: \:  \: \underbrace{ \boxed{\bf :\implies\:Locus \: of \: ( \alpha , \beta ) \: is \: a \: line}}

Answered by amansharma264
95

EXPLANATION.

If p, x₁, x₂, x₃, . . . . . . xₙ and

q, y₁, y₂, y₃, . . . . . yₙ are two infinite A.P.

Common difference = a and b.

As we know that,

General term of an A.P.

⇒ a + (a + d) + (a + 2d) + . . . .

⇒ Tₙ = a + (n - 1)d.

Using same concept in equation, we get.

⇒ p, x₁, x₂, x₃, . . . . . xₙ.

First term = a = p.

Common difference = d = b - a = a.

⇒ x₁ = p + a

⇒ x₂ = p + 2a.

⇒ x₃ = p + 3a.

⇒ x₄ = p + 4a.

. . . . .

⇒ xₙ = p + (n + 1 - 1)a.

⇒ xₙ = p + na.

⇒ q, y₁, y₂, y₃, . . . . . yₙ.

First term = a = q.

Common difference = b.

⇒ y₁ = q + b.

⇒ y₂ = q + 2b.

⇒ y₃ = q + 3b.

. . . . . .

⇒ yₙ = q + (n + 1 - 1)b.

⇒ yₙ = q + nb.

\sf \implies \alpha  = \dfrac{x_{1} + x_{2} + x_{3}+ . . . . .x_{n} } {n}

\sf \implies \alpha  = \dfrac{1}{n} \bigg[x_{1} + x_{2} + x_{3} + . . . . . x_{n} \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \bigg[(p + a) + (p + 2a) + (p + 3a) + . . . . +(p + na) \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \bigg[ p + p + p + p . . . . n \bigg] + \bigg[ a + 2a + 3a + . . . . . a \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \bigg[np \bigg] + \bigg[a (1 + 2 + 3 + . . . . . n) \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \bigg[ np + a \bigg(\dfrac{n(n + 1)}{2} \bigg) \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \bigg[ np  + a \bigg(\dfrac{n^{2}+ n }{2} \bigg) \bigg]

\sf \implies \alpha  = \dfrac{1}{n} \times \ n \bigg[ p + a \bigg(\dfrac{n + 1}{2} \bigg) \bigg]

\sf \implies \alpha  = p + a \bigg(\dfrac{n + 1}{2} \bigg).

\sf \implies \dfrac{2\alpha  - 2p}{a} = n + 1 . - - - - - (1)

\sf \implies \beta   = \dfrac{y_{1} + y_{2} + y_{3} + . . . . . y_{n}}{n}

\sf \implies \beta   = \dfrac{1}{n} \bigg[ y_{1} + y_{2} + y_{3} + . . . . . y_{n} \bigg].

\sf \implies \beta   = \dfrac{1}{n} \bigg[ (q + b) + (q + 2b) + (q + 3b) + .. . . . . + (q + nb) \bigg]

\sf \implies \beta   = \dfrac{1}{n} \bigg[q + q + q + . . . .. . n \bigg] + \bigg[ b + 2b + 3b + . . . . . nb \bigg].

\sf \implies \beta   = \dfrac{1}{n} \bigg[ nq + b(1 + 2 + 3 + . . . . . n) \bigg]

\sf \implies \beta   = \dfrac{1}{n} \bigg[ nq + b \bigg( \dfrac{n(n + 1)}{2} \bigg) \bigg].

\sf \implies \beta   = \dfrac{1}{n} \times n \bigg[ q + b \bigg(\dfrac{n + 1}{2} \bigg) \bigg]

\sf \implies \beta   = q + b \bigg( \dfrac{n + 1}{2} \bigg)

\sf \implies \dfrac{2\beta  - 2q}{b} = n + 1. - - - - - (2).

From equation (1) & (2), we get.

\sf \implies \dfrac{2\alpha  - 2p}{a} = \dfrac{2\beta  - 2q}{b}

\sf \implies b\alpha  - bp = a\beta  - aq

\sf \implies b\alpha  - a\beta  - bp + aq = 0.

Similar questions