Math, asked by rahulbhai3po, 1 year ago

if p(x) =2x3+ax2+3x-5 and q(x)=x3+x2-4x+a leaves same remainder when divided by (x-2). show that a=-13/3..


vikram991: hy

Answers

Answered by VemugantiRahul
59
Given
p(x)= 2x³+ax²+3x-5
q(x)= x³+x²-4x+a
both p(x) &q(x) leaves same remainder when divided by x-2.
=> (x-2) is a factor of p(x) & q(x)
=> 2 is a zero of p(x) & q(x)
•°• p(2) = q(2)

2(2³)+a(2²)+3(2)-5= (2³)+(2²)-4(2)+a
2(8)+4a+6-5= 8+4-8+a
=> 4a+17= a+4
=> 3a=-13
=> a= -(13/3)



;)
hope it helps
Comment if you need to clear something


VemugantiRahul: got it?
rahulbhai3po: yeah
rahulbhai3po: thanks
VemugantiRahul: mark brainliest if you find this helpful
arpitha54: once more can u explain in other model
Answered by fanbruhh
104

 \huge{hey}


 \huge{ \mathfrak{here \: is \: answer}}



 \sf{solution}


 \bf{by \: remainder \: theorem}


 \sf{r = p(a)}



 \bf{r = p(2)}


 \sf{given \:  -  \:  \large \: r \tiny{1} \large= r \tiny{2}}


▶ p(2)=2(2)³+a(2)²+3(2)-5=(2)³+(2)²-4(2)+a

▶2(8)+a(4)+6-5=8+4-8+a

▶16+4a+1=4+a

▶17+4a=4+a

▶4a-a =4-17

▶3a=-13


 \bf{a =  \frac{ - 13}{3} }

 \large{hence \: proved}


 \huge \bf{hope \: it \: helps}

 \huge{ \mathbb{thanks}}


fanbruhh: thanks
fanbruhh: and its my pleasure
Anonymous: Beautiful use of LaTeX ....heya utsav ji purva ji ko send karo....xD....khush ho jaenge....lol
fanbruhh: haha
fanbruhh: thanks
fanbruhh: dahiya
VemugantiRahul: how to use latex
VemugantiRahul: utsav100
fanbruhh: pls no comment here dear
fanbruhh: u can inbox me
Similar questions