Math, asked by abikumar9236, 1 month ago

If p(x)=4x square +x-2 then value of p(2)-p(-1)+p(1/2)

Answers

Answered by mathdude500
55

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:p(x) =  {4x}^{2} + x - 2

Now, we have to find the value of

\rm :\longmapsto\:p(2) -p( - 1) + p\bigg[\dfrac{1}{2} \bigg]

Consider,

 \red{\rm :\longmapsto\:p(2)}

\rm  \:  =  \:  {4(2)}^{2} + 2 - 2

\rm \:  =  \:16

\bf\implies \:\boxed{ \tt{ \: p(2) = 16 \: }}

Now, Consider

 \red{\rm :\longmapsto\:p( - 1)}

\rm  \:  =  \:  {4( - 1)}^{2}  - 1 - 2

\rm  \:  =  \:  4  - 1 - 2

\rm  \:  =  \:  1

\bf\implies \:\boxed{ \tt{ \: p( - 1) = 1 \: }}

Now, Consider,

 \red{\rm :\longmapsto\:p\bigg[\dfrac{1}{2} \bigg]}

\rm \:  =  \:4 \times  {\bigg[\dfrac{1}{2} \bigg]}^{2}  + \bigg[\dfrac{1}{2} \bigg] - 2

\rm \:  =  \:4 \times \dfrac{1}{4}  + \dfrac{1}{2}  - 2

\rm \:  =  \:1  + \dfrac{1}{2}  - 2

\rm \:  =  \:\dfrac{1}{2}  - 1

\rm \:  =  \:\dfrac{1 - 2}{2}

\rm \:  = \:   -  \:\dfrac{1}{2}

\bf\implies \:\boxed{ \tt{ \: p\bigg[\dfrac{1}{2} \bigg] =  \:  -  \: \dfrac{1}{2} }}

So, Now Consider,

\rm :\longmapsto\:p(2) - p( - 1) + p\bigg[\dfrac{1}{2} \bigg]

\rm \:  =  \:16 - 1 - \dfrac{1}{2}

\rm \:  =  \:15 - \dfrac{1}{2}

\rm \:  =  \: \dfrac{30 - 1}{2}

\rm \:  =  \: \dfrac{29}{2}

Hence,

\purple{\bf\implies \:\boxed{ \tt{ \: \:p(2) + p( - 1) + p\bigg[\dfrac{1}{2} \bigg]  =  \: \dfrac{29}{2} \: }}}

Similar questions