Math, asked by samimpapa354, 9 months ago

if p(x)= cx^2+dx-c. Find alpha square+beta square​

Answers

Answered by silentlover45
4

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {cx}^{2} \: + \: {dx} \: - \: {c}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Value \: \: of \: \: {\alpha}^{2} \: + \: {\beta}^{2}?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {cx}^{2} \: + \: {dx} \: - \: {c}

\: \: \: \: \: \leadsto {a} \: \: = \: \: {c}

\: \: \: \: \: \leadsto {b} \: \: = \: \: {d}

\: \: \: \: \: \leadsto {c} \: \: = \: \: {-c}

  • \: \: \: \: \: {Let \: \: \alpha \: \: and \: \: \beta \: \: are \: \: the \: \: zeroes \: \: of \: \: the \: \: given \: \: polynomial}

\: \: \: \: \: \leadsto {\alpha} \: + \: {\beta} \: \: = \: \: \dfrac{-b}{a}

\: \: \: \: \: \leadsto \dfrac{-d}{c}

\: \: \: \: \: \leadsto {\alpha\beta} \: \: = \: \: \dfrac{c}{a}

\: \: \: \: \: \leadsto \dfrac{-c}{c}

\: \: \: \: \: \leadsto {-1}

\: \: \: \: \: {({\alpha} \: + \: {\beta})}^{2} \: \: \leadsto \: \: {\alpha}^{2} \: + \: {\beta}^{2} \: + \: {{2}\alpha\beta}

\: \: \: \: \: \leadsto {({\alpha} \: + \: {\beta})}^{2} \: + \: {{2}\alpha\beta}

  • \: \: \: \: \: put \: \: the \: \: of \: \: {\alpha} \: + \: {\beta} \: \: and \: \: {\alpha\beta}

\: \: \: \: \: \leadsto {(\dfrac{-d}{c})}^{2} \: + \: {{2} \: \times \: {-1}}

\: \: \: \: \: \leadsto {\dfrac{d}{{c}^{2}}}^{2} \: + \: {{(-2)} \: \times \: {-1}}

\: \: \: \: \: \leadsto {\dfrac{{d}^{2}}{{c}^{2}}^{2} \: + \: {2}}

\: \: \: \: \: \leadsto \dfrac{{d}^{2} \: + \: {2c}^{2}}{{c}^{2}}

  • \: \: \: \: \: So, \: \: Value \: \: of \: \: {\alpha}^{2} \: + \: {\beta}^{2} \: \: is \: \:  \dfrac{{d}^{2} \: + \: {2c}^{2}}{{c}^{2}}

__________________________________

Answered by akanshagarwal2005
1

Answer:

d²+2c²/c² is your answer

Similar questions