If p = x^m+n.y^l, q = x^n+l.y^m an and r = x^l+m.y^n”, prove that
p^m-n.q^n-1.p^l-m = 1
Answers
Answered by
3
Solution :
• p = x^(m + n) . y^l
• q = x^( n + l) . y^m
• r = x^( l + m) . y^n
p^( m - n )
> [ x^(m + n) . y^l ]^( m - n )
> x^[ m² - n² ] . y^[ lm - ln ]
q^ ( n - l)
> [ x^( n + l) . y^m ] ^ ( n - l)
> x^[ n² - l² ] . y^[ mn - ml ]
r^( l - m )
> [ x^( l + m) . y^n ]^ ( l - m)
> x^[ l² - m² ] . y^ [ nl - nm ]
p^( m - n ) × q^(n - l) × r^( l - m )
> > x^[ m² - n² ] . y^[ lm - ln ] × x^[ n² - l² ] . y^[ mn - ml ] × x^[ l² - m² ] . y^ [ nl - nm ]
> x^0 y^0
> 1
Hence Proved
__________________________________________
Similar questions