Math, asked by Golu00678, 11 months ago

if p (x) = to X square + bx + c is exactly divisible by (2x-1)and (X + 2 ) , p(2) =12 then a and b and c are:
a) 2,3,-2
b) 2,-2,3
c) 3,-2,2
d) 3,2,-2
Please answer fast

Answers

Answered by Anonymous
5

\huge{\fbox{\fbox{\green{\mathfrak{ANSWER}}}}}

\huge\boxed{\underline{\mathcal{\red{(a)}\green{2,}\pink{3,}\orange{-2}\blue{.}\pink{.}}}}

\huge\blue{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{EXPLANATION }}}}}}}

Given,

{\bf{\green{=>p(x)=ax^2+bx+c... EQ1}}}

{\bf{\red{=>p(2)=12}}}

Sub,option (a) in EQ1

{\bf{\blue{=>p(x)=2x^2+3x-2}}}

{\bf{\pink{=>p(2)=2(2)^2+3(2)-2}}}

{\bf{\green{=>p(2)=8+6-2}}}

{\bf{\orange{=>p(2)=14-2}}}

{\bf{\blue{=>p(2)=12}}}

Now,

{\bf{\red{divide }}}{\bf{\green{it}}}{\bf{\pink{by}}}

{\bf{\blue{(2x-1)}}}

{\bf{\red{=>(2(2)-1)}}}

{\bf{\blue{=>(4-1)}}}

{\bf{\pink{=>3}}}

And

{\bf{\green{=>(x+2)}}}

{\bf{\orange{=>(2+2)}}}

{\bf{\blue{=>4}}}

{\bf{\red{p(2)=12}}}{\bf{\green{divisible}}}{\bf{\pink{by}}}{\bf{\blue{both}}} {\bf{\green{3}}}{\bf{\red{and}}}{\bf{\blue{4}}}

{\bf{\pink{so, }}}

{\bf{\green{a=2,}}}{\bf{\orange{b=3,}}}{\bf{\blue{c=-2}}}

{\bf{\red{and}}}

{\bf{\green{X=2}}}

Answered by KJB811217
6

Answer:

Hope it helps you.... Refers to the attachment.... Thanks....

Attachments:
Similar questions