If p(x) = x^3 - x^2 + x + 1, then find the value of p(1) + p(-1) / 2
Answers
Answered by
9
☺☺☺
Sol : p ( x ) = x³ - x² + x + 1
When, x = 1.
p ( 1 ) = 1³ - ( 1 )² + 1 + 1
p ( 1 ) = 1 - 1 + 1 + 1
p ( 1 ) = 3 - 1
p ( 1 ) = 2.
When, x = ( - 1 / 2 )
p ( -1 / 2 ) = ( - 1/ 2 )³ - ( -1 / 2 )² + ( - 1 / 2 ) + 1
p ( - 1 / 2 ) = - 1 / 8 - ( 1 / 4 ) - 1 /2 + 1
p ( -1 / 2 ) = -1 / 8 - 1 /4 - 1 /2 + 1
- 1 - 2 - 4 + 8
p ( - 1 / 2 ) = --------------------
8
- 7 + 8
p ( -1 / 2 ) = ---------------
8
p ( - 1 / 2 ) = 1 / 8.
☺☺☺
Sol : p ( x ) = x³ - x² + x + 1
When, x = 1.
p ( 1 ) = 1³ - ( 1 )² + 1 + 1
p ( 1 ) = 1 - 1 + 1 + 1
p ( 1 ) = 3 - 1
p ( 1 ) = 2.
When, x = ( - 1 / 2 )
p ( -1 / 2 ) = ( - 1/ 2 )³ - ( -1 / 2 )² + ( - 1 / 2 ) + 1
p ( - 1 / 2 ) = - 1 / 8 - ( 1 / 4 ) - 1 /2 + 1
p ( -1 / 2 ) = -1 / 8 - 1 /4 - 1 /2 + 1
- 1 - 2 - 4 + 8
p ( - 1 / 2 ) = --------------------
8
- 7 + 8
p ( -1 / 2 ) = ---------------
8
p ( - 1 / 2 ) = 1 / 8.
☺☺☺
NoClue:
Why did we substitute value of X with (-1/2)?
Similar questions