Math, asked by honey3378, 5 months ago

If p(x)=x square-4x+3, evaluate :- p(2)-p(-1)+p(1/2)??​

Answers

Answered by Anonymous
61

Explanation,

Given,

  • Polynomial, p(x) = - 4x + 3

To Find,

  • The value of p(2) - p(-1) + p(1/2) .

Solution,

Given, p(x) = - 4x + 3

[ Put p(x = 2) ]

⇒ p(2) = 2² - 4 × 2 + 3

⇒ p(2) = 4 - 8 + 3

⇒ p(2) = -4 + 3

p(2) = -1

[ Put p(x = -1) ]

⇒ p(-1) = (-1)² - 4 × -1 + 3

⇒ p(-1) = 1 + 4 + 3

⇒ p(-1) = 5 + 3

p(-1) = 8

[ Put p(x = 1/2) ]

⇒ p(1/2) = (1/2)² - 4 × 1/2 × 3

⇒ p(1/2) = 1/4 - 2 + 3

⇒ p(1/2) = 1/4 + 1

p(1/2) = 5/4

Now,

p(2) - p(-1) + p(1/2)

⇒ -1 - 8 + 5/4

⇒ -9 + 5/4

-31/4

Therefore,

The value of p(2) - p(-1) + p(1/2) is -31/4.

Answered by ItzInnocentPrerna
12

\huge\mathcal\colorbox{violet}{{\color{black}{★ANSWER★}}}

\huge\color{violet}{\textbf{\textsf{GIVEN :-}}}

  • Polynomial, p(x) = x² - 4x + 3

\huge\color{violet}{\textbf{\textsf{TO FIND :-}}}

  • The value of p(2) - p(-1) + p(1/2)

\huge\color{violet}{\textbf{\textsf{SOLUTION :-}}}

p(x) = x² - 4x + 3

[Put p(2)]

→ p(2) = 2² - 4 × 2 + 3

→ p(2) = 4 - 8 + 3

→ p(2) = -4 + 3

→ p(2) = -1

[Put p(-1)]

→ p(-1) = (-1)² - 4 × -1 + 3

→ p(-1) = 1 + 4 + 3

→ p(-1) = 5 + 3

→ p(-1) = 8

[Put p(1/2)]

→ p(1/2) = (1/2)² - 4 × 1/2 + 3

→ p(1/2) = 1/4 - 2 + 3

→ p(1/2) = 1/4 + 1

→ p(1/2) = 5/4

Now,

p(2) - p(-1) + p(1/2)

→ -1 - 8 + 5/4

→ -9 + 5/4

→ -31/4

Therefore, the value of p(2) - p(-1) + p(1/2) is -31/4.

Hope it Helps Buddy ❤️

Similar questions