Math, asked by arpuarpu65, 4 days ago

if p(x) = x square - 4x + 3. Evaluate p(2)-pc(-1) + p(1/2)​

Answers

Answered by Moonlight568
1

Answer:

After putting x=2 in equation, we get −1.

After putting x=−1, we get 8

After putting x=1/2 we get 5/4

So, p(2)−p(−1)+p(1/2) = -1 -8 + 5/4

=−9+ 5/4 = -36+ 5/4 = -31/4

Answered by mathdude500
10

Appropriate Question :-

\sf \: If \: p(x) =  {x}^{2} - 4x + 3, \: evaluate \: p(2) - p( - 1) + p\bigg(\dfrac{1}{2} \bigg) \\

\large\underline{\sf{Solution-}}

Given polynomial is

\rm \: p(x) =  {x}^{2} - 4x + 3 \\

Consider

\rm \: p(2) \\

\rm \: =  \: {2}^{2} - 4(2) + 3 \\

\rm \: =  \: 4 - 8 + 3 \\

\rm \: =  \: 7 - 8 \\

\rm \: =  \:  - 1 \\

\rm\implies \:\boxed{\sf{  \:\rm \: p(2) \:  =  \:  -  \: 1 \:  \:}} \\

Now, Consider

\rm \: p( - 1)

\rm \: =  \: {( - 1)}^{2} - 4( - 1) + 3 \\

\rm \: =  \: 1 + 4 + 3 \\

\rm \: =  \: 8 \\

\rm\implies \:\boxed{\sf{  \:\rm \: p( - 1) \:  =  \: 8  \:  \:}} \\

Now, Consider

\rm \: p\bigg(\dfrac{1}{2} \bigg) \\

\rm \: =  \: {\bigg(\dfrac{1}{2} \bigg) }^{2}  - 4 \times \dfrac{1}{2}  + 3

\rm \: =  \:\dfrac{1}{4} - 2 + 3 \\

\rm \: =  \:\dfrac{1}{4}  + 1 \\

\rm \: =  \:\dfrac{1 + 4}{4} \\

\rm \: =  \:\dfrac{5}{4} \\

\rm\implies \:\boxed{\sf{  \:\rm \: p\bigg(\dfrac{1}{2}  \bigg)  = \dfrac{5}{4}  \:  \: }} \\

Now, Consider

\rm \: p(2) - p( - 1) + p\bigg(\dfrac{1}{2} \bigg)  \\

\rm \: =  \: - 1  -  8 + \dfrac{5}{4}  \\

\rm \: =  \:  - 9 + \dfrac{5}{4}  \\

\rm \: =  \:  \dfrac{ - 36 + 5}{4}  \\

\rm \: =  \:   -  \: \dfrac{31}{4}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: p(2) - p( - 1) + p\bigg(\dfrac{1}{2} \bigg) =  -  \frac{31}{4}  \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

Algebraic Identities to know : -

➢  (a + b)² = a² + 2ab + b²

➢  (a - b)² = a² - 2ab + b²

➢  a² - b² = (a + b)(a - b)

➢  (a + b)² = (a - b)² + 4ab

➢  (a - b)² = (a + b)² - 4ab

➢  (a + b)² + (a - b)² = 2(a² + b²)

➢  (a + b)³ = a³ + b³ + 3ab(a + b)

➢  (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions