If p(x)=x3-x2+x+1, then find the value of p(1)+p(-1)/2
Answers
P(x) = x³ - x² + x + 1
P(1) = 1 - 1 + 1 + 1 = 2
P(-1)/2 = {-1³ - (-1)² -1 + 1}/2
P(-1)/2 = -2/2 = -1
p(1) + p(-1)/2 = 2-1 = 1
p(1) + p(-1)/2 = 1
The value of p(1)+p(-1)/2 is 1.
Given:
p(x) = x³ - x² + x + 1
To Find:
The value of p(1)+p(-1)/2.
Solution:
It is given that p(x) = x³ - x² + x + 1 ------(1)
We are required to find the value of p(1)+p(-1)/2.
So we must find p(1) and p(-1) values.
In order to find the value of p(1)
We have to substitute x = 1 in equation(1) we get
p(1) = 1³ - 1² + 1 + 1
p(1) = 2
In order to find the value of p(-1)
We have to substitute x = -1 in equation(1) we get
p(-1) = (-1³) - (-1²) + (-1) + 1
p(-1) = -1 -1 -1 +1
p(-1) = -2
P(-1)/2 = {-1³ - (-1)² -1 + 1}/2
p(1)+p(-1)/2 -----(2)
Substitute the values of p(1) and p(-1) in equation(2) we get
p(1)+p(-1)/2 = 2 +((-2)/2)
p(1)+p(-1)/2 = 2 - 1
p(1)+p(-1)/2 = 1
Therefore, The value of p(1)+p(-1)/2 is 1.
#SPJ2