Math, asked by venubabusajja1977, 5 months ago

If the equation (a1 - a2)x + (61 – 62)y= C represents the
perpendicular bisector of the line segment joining
(aj, bi), (a2, b2), then 2 cis

Answers

Answered by shadowsabers03
18

Correct Question:-

If the equation (a_1-a_2)x+(b_1-b_2)y=c represents the  perpendicular bisector of the line segment joining  (a_1,\ b_1) and (a_2,\ b_2), then find the value of 2c.

Solution:-

The midpoint of the line segment joining (a_1,\ b_1) and (a_2,\ b_2) is \left(\dfrac{a_1+a_2}{2},\ \dfrac{b_1+b_2}{2}\right).

This point belongs to the perpendicular bisector of the line segment, i.e., (a_1-a_2)x+(b_1-b_2)y=c.

Then,

\longrightarrow(a_1-a_2)\cdot\dfrac{a_1+a_2}{2}+(b_1-b_2)\cdot\dfrac{b_1+b_2}{2}=c

\longrightarrow(a_1-a_2)(a_1+a_2)+(b_1-b_2)(b_1+b_2)=2c

\longrightarrow\underline{\underline{(a_1)^2-(a_2)^2+(b_1)^2-(b_2)^2=2c}}

Answered by MrsZiddi
1

Correct Question:-

If the equation (a_1-a_2)x+(b_1-b_2)y=c(a

1

−a

2

)x+(b

1

−b

2

)y=c represents the perpendicular bisector of the line segment joining (a_1,\ b_1)(a

1

, b

1

) and (a_2,\ b_2),(a

2

, b

2

), then find the value of 2c.2c.

Solution:-

The midpoint of the line segment joining (a_1,\ b_1)(a

1

, b

1

) and (a_2,\ b_2)(a

2

, b

2

) is \left(\dfrac{a_1+a_2}{2},\ \dfrac{b_1+b_2}{2}\right).(

2

a

1

+a

2

,

2

b

1

+b

2

).

This point belongs to the perpendicular bisector of the line segment, i.e., (a_1-a_2)x+(b_1-b_2)y=c.(a

1

−a

2

)x+(b

1

−b

2

)y=c.

Then,

\longrightarrow(a_1-a_2)\cdot\dfrac{a_1+a_2}{2}+(b_1-b_2)\cdot\dfrac{b_1+b_2}{2}=c⟶(a

1

−a

2

)⋅

2

a

1

+a

2

+(b

1

−b

2

)⋅

2

b

1

+b

2

=c

\longrightarrow(a_1-a_2)(a_1+a_2)+(b_1-b_2)(b_1+b_2)=2c⟶(a

1

−a

2

)(a

1

+a

2

)+(b

1

−b

2

)(b

1

+b

2

)=2c

\longrightarrow\underline{\underline{(a_1)^2-(a_2)^2+(b_1)^2-(b_2)^2=2c}}⟶

(a

1

)

2

−(a

2

)

2

+(b

1

)

2

−(b

2

)

2

=2c

Similar questions