Math, asked by kumariarchana3121982, 1 year ago

If perimeter of a semi circular park is 72 metre find the area and radius​

Answers

Answered by Tara1512
1

Step-by-step explanation:

radius = 22.9 m

please refer to the image for detail explanation

Attachments:
Answered by AngeliCat
2

\star\small\sf\underline\blue{Given:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The perimeter of a semi-circular park is 72 m.

______________________

\star\small\sf\underline\blue{Find \: Out:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • The area and radius of the semi-circular park = ?

______________________

\star\small\sf\underline\blue{Solution:-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Perimeter of semi-circular park = 72m

 \implies \sf \: r \bigg(\pi + 2 \bigg) = 72 \: m \\  \\  \implies \sf \: r \bigg( \dfrac{22}{7}  +  \dfrac{2}{1}  \bigg) = 72 \: m \\  \\  \implies \sf \: r \bigg( \dfrac{22 + 14}{7}  \bigg) = 72 \: m \\  \\  \implies \sf \: r \times  \dfrac{36}{7}  = 72 \: m \\  \\  \therefore \sf \: Radius =  \dfrac{ \cancel{72} \times 7}{ \cancel{36} } \\  \\  \leadsto\sf \: Radius =  2 \times 7 \\  \\  \leadsto \sf \: Radius =  \boxed{  \bf \: 14 \: m}

______________________

\star\small\sf\underline\blue{Therefore:-}

  • Radius of semi-circular park = 14 m

\footnotesize\bold{\underline{\underline{\sf{\red{Now:-}}}}}\\\\

 \sf \: Area =  \dfrac{1}{2} \pi \: r {}^{2}  \\  \\ \sf \: Area = \dfrac{1}{2}  \times  \dfrac{22}{7}  \times (14) {}^{2}  \\  \\ \sf \: Area = \dfrac{1}{ 2}  \times  \dfrac{22}{ \cancel7}  \times  \cancel{14 }\times 14 \\  \\ \sf \: Area = \dfrac{1}{ \cancel2}  \times 22 \times  \cancel2 \times 14 \\  \\ \sf \: Area =22 \times 14 \\  \\ \sf \: Area = \boxed{ \bf \: 308 \: m {}^{2} }

______________________

\star\small\sf\underline\blue{Therefore:-}

  • Area of semi-circular park = 308 m²
Similar questions