if PQ is a tangent to a circle at Q with center O,then angle OPQ is
A.45
B.90
C.120
D.100
Answers
Answered by
11
Given- O is the centre of a circle to which PQ is a tangent at P. ΔOPQ is isosceles whose vertex is P.
To find out- ∠OQP=?
Solution- OP is a radius through P, the point of contact of the tangent PQ with the given circle ∠OPQ=90°
since the radius through the point of contact of a tangent to a circle is perpendicular to the tangent. Now ΔOPQ is isosceles whose vertex is P.
∴OP=PQ⟹∠OQP=∠QOP⟹∠OQP+∠QOP=2∠OQP.
∴ By angle sum property of triangles,
∴∠OPQ+2∠OQP=180°
⟹90°
+2∠OQP=180°
⟹∠OQP=45°
.
Ans- Option- A.
Answered by
2
Given- O is the centre of a circle to which PQ is a tangent at P. ΔOPQ is isosceles whose vertex is P.
To find out- ∠OQP=?
Solution- OP is a radius through P, the point of contact of the tangent PQ with the given circle ∠OPQ=90°
since the radius through the point of contact of a tangent to a circle is perpendicular to the tangent. Now ΔOPQ is isosceles whose vertex is P.
∴OP=PQ⟹∠OQP=∠QOP⟹∠OQP+∠QOP=2∠OQP.
∴ By angle sum property of triangles,
∴∠OPQ+2∠OQP=180°
⟹90°
+2∠OQP=180°
⟹∠OQP=45°
.
Ans- Option- A.
Similar questions