Math, asked by hjhhhhh7746, 1 year ago

If pqrs is a parallelogram and ab parallel PS, prove that oc parallel sr

Answers

Answered by himanshugarg79
17
Given PQRS is a parallelogram, so PQ || SR and PS || QR. Also, AB || PS

In △ OAB,  we have PS ∥ AB.Since PS ∥ AB and PA is a transversal, then∠OPS = ∠OAB     [corresponding angles]    ............(1) Since PS ∥ AB and SB is a transversal, then∠OSP = ∠OBA     [corresponding angles]...(2) In △ OPS and △ OAB, ∠OPS = ∠OAB     [using (1)] ∠OSP = ∠OBA     [using (2)] ⇒ △ OPS ~ △ OAB    [AA similarity] ⇒ OPOA = PSAB = OSOB     [corresponding sides of similar △'s are proportional]   ..............(3) Since, PQRS is a ∥gm, so QR ∥ AB.Since QR ∥ AB and QA is a transversal,∠CQR = ∠CAB    [corresponding angles]    ............(4) Since QR ∥ AB and RB is a transversal,∠CRQ = ∠CBA    [corresponding angles]    ............(5)

In △ CQR and △ CAB ∠CQR = ∠CAB   [using (4)] ∠CRQ = ∠CBA   [using (5)] ⇒ △ CQR ~ △ CAB   [AA similarity] ⇒ CQCA = QRAB = CRCB ⇒ CQCA = PSAB = CRCB    [as, QR = PS].......(6) From (3) & (6)     OPOA = CQCA ⇒ AOOP = ACQC ⇒ AOOP − 1 = ACQC − 1 ⇒ AO − OPOP = AC − QCQC ⇒ APOP = AQQC    ..............(7)

Now, In △ AOC, we have,    APOP = AQQC    [using (7)]⇒ PQ ∥ OC    [converse of Thales theorem] Now, PQ ∥ SR as PQRS is a ∥gm. So,  OC ∥ SR.
Attachments:
Answered by shivenduparashar
12

This can be proved by applying similarity of triangles and converse of Thales Theorem .

Step-by-step explanation:

To prove - OC║SR

Proof  -  In ΔOPS and ΔOAB

∠POS = ∠AOB     (common in both)

∠OSP = ∠OBA  (corresponding angles are equal as PS║AB)

=> ΔOPS ~ ΔOAB    [AA criteria]

=>  PS/AB =  OS/OB       ........................(1)     (sides in similar triangles are proportional)

In ΔCAB and ΔCRQ

As, QR║AB

=> ∠QCR = ∠ACB        (common)

=>  ∠CBA  = ∠CRQ       (corresponding angles are equal)

=>  ΔCAB ~ ΔCQR           [AA criteria]

=>  CR/CB = QR/AB         (sides in similar triangles are proportional)

Also,  PS = QR        [ PQRS  is parallelogram]

=>  CR/CB = PS/AB                     ......................(2)

From    (1) and (2)

=>   OS/OB =  CR/CB

=>   OB/OS =  CB/CR

Subtracting 1 from both sides

So,  OB/OS - 1 =  CB/CR - 1

=>  (OB - OS)/OS  =  (CB - CR)/CR

=>  BS/OS = BR/CR

By converse of Thales Theorem

=>  OC║SR        .     Hence proved  .

........Brainliest..................

Similar questions