Math, asked by priyade8312, 1 year ago

If pth and qth termof an AP are 1/qr and 1/pr respectively, find the rth term

Answers

Answered by rishabh1894041
5

Step-by-step explanation:

let \: first \: term \: of \: a.p. = a \\ common \: difference = d \\ pth \: term \:  = a + (p - 1) \times d =  \frac{1}{qr} .......(1) \\  \\ qth \: term \:  = a + (q - 1) \times d =  \frac{1}{pr} ......(2) \\  \\ substracting \: (2) \: from \: (1) \\ (p - 1 - q + 1) \times d =  \frac{(p - q)r}{pq {r}^{2} }   \\ d =  \frac{1}{pqr}  \\  \\ substuiting \: the \: value \: of \: d \: in \: (1) \\ we \: get \:  \:  \: a =  \frac{1}{pqr}  \\  \\ rth \: term \:  = a + (r - 1) \times d \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{pqr}  +  \frac{(r - 1)}{pqr}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{1}{pqr}   + \frac{1}{pq}   -  \frac{1}{pqr} \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{1}{pq}  \\  \\  \\ hope \: it \: will \: help \: you..

Similar questions