Math, asked by spvishnoi06, 2 months ago

if pth qth and rth term of an ap is a b and c then show that a(q-r)+ b(r-p) +c(​

Answers

Answered by mathdude500
8

Correct Statement:-

  • if pth qth and rth term of an ap is a b and c then show that a(q - r)+ b(r - p) +c(p - q) = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

Gɪᴠᴇɴ :

  • The pᵗʰ term of an arithmetic sequence is a.
  • The qᵗʰ term of an arithmetic sequence is b.
  • The rᵗʰ term of an arithmetic sequence is c.

─━─━─━─━─━─━─━─━─━─━─━─━─

To show :-

  • a(q - r)+ b(r - p) +c(p - q) = 0

─━─━─━─━─━─━─━─━─━─━─━─━─

Formula used :-

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}★

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

─━─━─━─━─━─━─━─━─━─━─━─━─

Solution :-

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{first \: term \: of \: ap \: is \: x} \\ &\sf{common \: difference \: of \: ap \:  = y} \end{cases}\end{gathered}\end{gathered}

\large\underline{\bold{❥︎Step :- 1 }}

☆ Now, The pᵗʰ term of an arithmetic sequence is a.

\tt \:  \implies \: a \:  = x + (p - 1)y -  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

☆ Again, The qᵗʰ term of an arithmetic sequence is b.

\tt \:  \implies \: b = x + (q - 1)y  -  -  - (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

Also, The rᵗʰ term of an arithmetic sequence is c.

\tt \:  \implies \: c = x + (r - 1)d -  -  -  - (4)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 4 }}

\tt \: Consider \: a(q - r)+ b(r - p) +c(p - q)

☆ On substituting the values of a, b, c we get

\tt \:  \bigg( x + (p - 1)y\bigg)(q - r) +  \bigg( x + (q - 1)y\bigg)(r - p)  +  \bigg( x + (r - 1)y\bigg)(p - q)

\tt \:  = x(q - r) + (p \: - 1)y(q - r) + x(r - p) \tt \: + \\ \tt \:  y(q - 1)(r - p) + x(p - q) + y(p - q)(r - 1)

\tt \:  = x(q -  r  + r -  p+ p - q) + y(pq - q - rp + r + \\  \tt \: qr - r - pr + r + pr - p - qr + q)

\tt \:  = x(0) + y(0)

\tt \:  = 0

\tt \:  \implies \: a(q - r)+ b(r - p) +c(p - q) = 0

\large{\boxed{\boxed{\tt{Hence, Proved}}}}

Similar questions