Math, asked by pushasahu26, 10 months ago

if pth term of an AP is 1/q and qth term is 1/p then pqth term is detail explanation required and i wil mark as brainliest

Answers

Answered by stylishtamilachee
7

Answer:

Let the first term be a and common difference be d.

According to question:

= > pth term = 1/q

= > a + (p-1)d = 1/q

= > a + pd - d = 1/q ...(1)

= > qth term = 1/p

= > a + qd - d = 1/p ...(2)

(2) - (1):

= > qd - pd = 1/p - 1/q

= > d(q-p) = (q-p)/pq

= > d = 1/pq

Hence,

= > a + pd - d = 1/q

= > a + p(1/pq) - (1/pq ) = 1/q

= > a = 1/pq = d

Therefore,

= > pdth term

= > a + ( pq - 1 )d

= > d + ( pq -1 )d

= > d + pqd - d

= > pqd

= > pq(1/pq)

= > 1

Hence the pqth term is 1.

Answered by Anonymous
7

\huge\star \: {\sf{\underline{\red{Given}}}}

Let the first term be a and the difference be d.

\huge{\bf{\underline{\red{A. T. Q, }}}}

\implies{\tt{\pink{pth term  =  \frac{1}{q}}}}   \\  \\

\implies{\tt{\pink{pth term  =  \frac{1}{q}}}}   \\    \\

\implies{\tt{\pink{a+(p-1)d =  \frac{1}{q}}}}   \\\\

\implies{\tt{\pink{ a+pd - d =  \frac{1}{q}------(1)}}}   \\\\

\implies{\tt{\pink{qth term  =  \frac{1}{p}}}}   \\\\

\implies{\tt{\pink{a + qd - d =  \frac{1}{p}-----(2)}}}   \\\\

Here we will subtract the eq--(2) - eq(1),

\implies{\tt{\green{qd - pd =  \frac{1}{p}  - \frac{1}{q}}}}   \\    \\

\implies{\tt{\green{d(q - p) =  \frac{q - p}{pq} }}}   \\    \\

\implies{\tt{\green{d =  \frac{1}{pq}}}} \\  \\

HenCe,

\implies{\tt{\green{a + pd  - d =  \frac{1}{q}}}} \\  \\

\implies{\tt{\green{a + p (\frac{1}{pq}) - \frac{1 }{pq} = \frac{1}{q}}}} \\  \\

\implies{\tt{\green{\frac{ a = 1}{pq = d}}}} \\  \\

Therefore,

\implies{\tt{\green{pdth \: term}}} \\  \\

\implies{\tt{\green{a + (pq-1)d}}} \\  \\

\implies{\tt{\green{d +(pq - 1)d}}} \\  \\

\implies{\tt{\green{d +pqd -d}}} \\  \\

\implies{\tt{\green{pq \frac{1}{pq}}}} \\  \\

\implies{\tt{\green{1}}} \\  \\

{\tt{\pink{\therefore{The \: pqth \: term = 1}}}}

Similar questions