Math, asked by renusagu1637, 9 months ago

if px-1=qr,qy-1=rp,rz-1=pq then the value of 1/x +1/y+1/z is equal to _______ please solve it correctly please answer or i will report you

Answers

Answered by suryarekhajaiswal
2

Answer:

pls do add

Step-by-step explanation:

1 /x +1/a

1/5

it will be helpful

Answered by fairyepsilon7532
0

Answer:

the question is

 if \:  \: {p}^{x - 1}  = qr \:   \\ \:  {q}^{y - 1}  = rp \:  \:   \\  {r}^{z - 1}  = pq \\ then \: find \: the \: value \: of \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  = \:   ? \\  \\ the \: value \: of \\  \frac{1}{x}  +  \frac{1}{y}  +  \frac{1}{z}  =  \\ \:  \frac{1}{log \:  pqr} (log \: p \:  + log \: q \:  + log \: r) \\  \\

Step-by-step explanation:

given  \: that  \:  {p}^{x - 1}  = qr \:   \\ \:  {q}^{y - 1}  = rp \:  \:   \\  {r}^{z - 1}  = pq \\ then \: \:  {p}^{x - 1}  = qr \:   \\ \frac{ {p}^{x } }{p}  = qr \\ {p}^{x}  =p qr \:  \\

taking logarithm on both sides

 log({p}^{x })  = log({pqr}) \\  x \: log(p)  =  \:  log(pqr)  \\ x =  \frac{\:  log(pqr)}{log(p)}  \\  \frac{1}{x}  =  \frac{{log(p)} }{{\:  log(pqr)}}  \\

then ,similarly we have

\frac{1}{y}  =  \frac{{log(q)} }{{\:  log(pqr)}}  \\ \frac{1}{z}  =  \frac{{log(r)} }{{\:  log(pqr)}}  \\

then , value of

 \frac{1}{x}  +  \frac{1}{y}   +  \frac{1}{z}  =    \frac{{log(p)} }{{\:  log(pqr)}} +  \frac{{log(q)} }{{\:  log(pqr)}}  +  \frac{{log(r)} }{{\:  log(pqr)}}  \\

that is on rearranging,

 =  \frac{{1} }{{\:  log(pqr)}} (  log(p) + log(q) + log(r)  )

DEFINITIONS

here,we have use the concepts of logarithm and powers for simplification ,

some of them are

  • log(bª)=a log b
  • log(ab)=log a +log b
  • log(a/b)=log a -log b

and

 {p}^{x - y}  =  \frac{ {p}^{x} }{ {p}^{y} }

{p}^{x - y}  =  \frac{ {p}^{x} }{ {p}^{y} }

 { ({p}^{x}) }^{y}  =  { {p}^{x} }^{y}

#SPJ3

Similar questions