Physics, asked by AMIRTHA6114, 9 months ago

If Q amount of heat is given to a diatomic ideal gas in a process in which the gas perform a work (2Q)/(3) on its surrounding. Find the molar heat capacity (in terms of R) for the process.

Answers

Answered by BrainlyConqueror0901
51

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Molar\:heat\:capacity=7.5R}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies Heat \: supplied (Q) =  Q \\  \\  \tt: \implies Work \: done(W) =  \frac{2Q}{3}  \\  \\ \red{\underline \bold{To \: Find : }} \\  \tt: \implies Molar \: heat \: capacity( C_{vm}) = ?

• According to given question :

 \bold{From \: first \: law \: of \: thermodynamics} \\   \tt:  \implies Q =   \Delta U + W \\  \\  \tt:  \implies Q = \Delta U  +  \frac{2Q }{3}  \\  \\  \tt:  \implies \Delta U= Q-  \frac{2Q}{3}  \\  \\  \tt: \implies \Delta U =  \frac{Q}{3}  -  -  -  -  - (1) \\  \\  \bold{For \: diatomic \: ideal \: gas} \\  \tt:  \implies \Delta U = nr\Delta T \\  \\  \tt:  \implies  \frac{Q}{3}  =  n \times  \frac{5}{2}R \Delta T  \\  \\  \tt :  \implies Q =7.5\: nR\Delta T -  -  -  -  - (2)\\ \\  \bold{For \: molar \: heat \: capacity} \\  \tt:  \implies  Q = n C_{vm}\Delta T \\  \\  \tt:  \implies  7.5 \: nR\Delta T = n C_{vm}\Delta T \\  \\   \green{\tt:  \implies  C_{vm} = 7.5 \: R}


Anonymous: Awesome
Rythm14: Ousum piyush sister
BrainlyConqueror0901: thnx anku
BrainlyConqueror0901: thnx Rythm bhaiya
Rythm14: Anytime sissy ;)
BrainlyConqueror0901: :unamused:
Rythm14: :joy:
Answered by Anonymous
67

Answer:

 \green{ \tt{molar \: heat \: capacity( c_{vm} ) = 7.5 \: R}}

Explanation:

 \tt   \to q =  \Delta U + W \:  \:  \: (from \: \:  F.L.O.T)\\  \\  \tt \to Q =   \Delta U+   \frac{2Q}{3}  \\  \\  \tt  \to Q-  \frac{2Q}{3}  =  \Delta U \\   \\  \tt  \to  \Delta U=  \frac{Q}{3}  -  -  -  -  - (1) \\  \\  \bold{For \: diatomic \: gas} \\  \tt \to  \Delta U =  \frac{5}{2}nR \Delta T \\  \\  \tt \to  \frac{Q}{3} =  \frac{5}{2}   nR\Delta T \\  \\  \tt  \to Q =  \frac{15}{2} nR  \Delta T  -  -  -  -  - (2)\\  \\  \bold{As \: according \: to \: molar \: heat \: capacity \: formula} \\  \tt \to Q= n c_{vm} \Delta T -  -  -  -  - (3) \\  \\  \bold{From \: (2) \: and \: (3)} \\  \tt \to  \frac{15}{2} nR\Delta T= n C_{vm} \Delta T\\  \\   \green{\tt \to  C_{vm} =  \frac{15}{2} R}


BrainlyConqueror0901: well done keep it up : )
Similar questions