Math, asked by zehanusmani3, 8 months ago

if q cos A=p, find tan A- cot A in terms of p and q​

Answers

Answered by Anonymous
35

Answer:

Given:-

  • qcos A = p

Find:-

  • Find tan A- cot A

Solution:-

{ \to{ \sf{qcos \:A = p }}}

{ \sf \to{cos \:A =  \frac{p}{q}  }}

We know that cos θ = Adjacent /Hypotenuse

So, Adjacent = p

Hypotenuse = q

From Pythagoras theorm:-

{ \boxed{ \sf{  {hyp}^{2}   =  {opp}^{2}  +  {adj}^{2} }}}

{ \to{ \sf{ {q}^{2} =  {opp}^{2} +  {p}^{2}   }}}

{ \to{ \sf{ {opp}^{2}  =  {q}^{2} -  {p}^{2}  }}}

{ \sf{ \to{opp =  \sqrt{ {q}^{2}   -   {p}^{2} } }}}

So, the opposite side is √q²-p²

Tan A - Cot A:-

{ \to{ \sf{  \frac{opp}{adj}  -  \frac{adj}{opp}  }}}

{ \to{ \sf{ \frac{ \sqrt{ {q}^{2}  -  {p}^{2} } }{p}  -  \frac{p}{ \sqrt{ {q}^{2}  -  {p}^{2} } } }}}

{ \to{ \sf{ \frac{ {q}^{2} - 2 {p}^{2}  }{p \sqrt{ {q}^{2}  -  {p}^{2} } } }}}

Therefore, Value of TanA - CotA is

q²-2p²/p√q²-p² .

Similar questions